Literatura académica sobre el tema "GTPasi"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "GTPasi".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "GTPasi"
Irving, Helen R. "Abscisic acid induction of GTP hydrolysis in maize coleoptile plasma membranes". Functional Plant Biology 25, n.º 5 (1998): 539. http://dx.doi.org/10.1071/pp98009.
Texto completoEstevez, Ana Y., Tamara Bond y Kevin Strange. "Regulation of I Cl,swell in neuroblastoma cells by G protein signaling pathways". American Journal of Physiology-Cell Physiology 281, n.º 1 (1 de julio de 2001): C89—C98. http://dx.doi.org/10.1152/ajpcell.2001.281.1.c89.
Texto completoUno, Tomohide, Tsubasa Moriwaki, Yuri Isoyama, Yuichi Uno, Kengo Kanamaru, Hiroshi Yamagata, Masahiko Nakamura y Michihiro Takagi. "Rab14 from Bombyx mori (Lepidoptera: Bombycidae) shows ATPase activity". Biology Letters 6, n.º 3 (13 de enero de 2010): 379–81. http://dx.doi.org/10.1098/rsbl.2009.0878.
Texto completoHerrmann, Andrea, Britta A. M. Tillmann, Janine Schürmann, Michael Bölker y Paul Tudzynski. "Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea". Eukaryotic Cell 13, n.º 4 (31 de enero de 2014): 470–82. http://dx.doi.org/10.1128/ec.00332-13.
Texto completoShan, Shu-ou, Sowmya Chandrasekar y Peter Walter. "Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation". Journal of Cell Biology 178, n.º 4 (6 de agosto de 2007): 611–20. http://dx.doi.org/10.1083/jcb.200702018.
Texto completoNur-E-Kamal, M. S. y H. Maruta. "The role of Gln61 and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP." Molecular Biology of the Cell 3, n.º 12 (diciembre de 1992): 1437–42. http://dx.doi.org/10.1091/mbc.3.12.1437.
Texto completoKötting, Carsten y Klaus Gerwert. "What vibrations tell us about GTPases". Biological Chemistry 396, n.º 2 (1 de febrero de 2015): 131–44. http://dx.doi.org/10.1515/hsz-2014-0219.
Texto completoKilloran, Ryan C. y Matthew J. Smith. "Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel". Journal of Biological Chemistry 294, n.º 25 (14 de mayo de 2019): 9937–48. http://dx.doi.org/10.1074/jbc.ra119.008653.
Texto completoKesseler, Christoph, Julian Kahr, Natalie Waldt, Nele Stroscher, Josephine Liebig, Frank Angenstein, Elmar Kirches y Christian Mawrin. "EXTH-64. SMALL GTPASES IN MENINGIOMAS: PROLIFERATION, MIGRATION, SURVIVAL, POTENTIAL TREATMENT AND INTERACTIONS". Neuro-Oncology 22, Supplement_2 (noviembre de 2020): ii101. http://dx.doi.org/10.1093/neuonc/noaa215.418.
Texto completoHumphries, Brock A., Zhishan Wang y Chengfeng Yang. "MicroRNA Regulation of the Small Rho GTPase Regulators—Complexities and Opportunities in Targeting Cancer Metastasis". Cancers 12, n.º 5 (28 de abril de 2020): 1092. http://dx.doi.org/10.3390/cancers12051092.
Texto completoTesis sobre el tema "GTPasi"
ZAMBERLAN, MARGHERITA. "La piccola GTPasi Rap1 interposta tra la proteina mitocondriale Opa1 e l'inibizione dell'angiogenesi". Doctoral thesis, Università degli studi di Padova, 2022. https://hdl.handle.net/11577/3460979.
Texto completoOPA1 is a protein with pleiotropic functions ranging from the orchestration of mitochondrial fusion and cristae remodeling to transcriptional reprogramming 1, 2. Here we present two different mechanisms by which OPA1 exerts a transcriptional regulation activity in endothelial and breast cancer cells. Mitochondria are dynamic organelles that are now recognized as regulators of signal transduction able to impact on cellular genetic programs 3, 4. Increasing evidence support a fundamental role for mitochondrial shape in the orchestration of cellular transcriptional programs, but how cells sense and respond to changes in mitochondrial shape is unclear 5. We recently discovered that angiogenesis is transcriptionally modulated by the key mitochondrial fusion gene OPA1 through NFκB activation1. In particular, ablation of OPA1 in vivo and in vitro leads to developmental and tumor angiogenesis inhibition 1. A deep RNA sequencing analysis identified a signature for the Ras-proximate-1 RAP1, and its cyclic AMP (cAMP)-activated nucleotide exchange factor EPAC1 upon OPA1 deletion in Human Umbilical Vein Endothelial Cells (HUVECs). Previously, several studies had reported the essential role of Rap1 in developmental angiogenesis and vessel stabilization 6, 7. After birth, Rap1 is not essential, but it participates in the maintenance of vasculature and nitric oxide (NO) homeostasis 6, 8. Albeit EPAC1 is highly abundant and cover numerous functions in endothelial cells, its role in angiogenesis remained to be clarified 9. Likewise, EPAC1 was shown to be important for endothelial cells biology 10, 11. A handful of studies retrieved EPAC1 in mitochondria, and RAP1 in mitochondria associated membranes (MAMs) by proteomics, suggesting that they might be linked to mitochondria 12, 13. Whether the EPAC1/RAP1 axis could sense changes in mitochondria driven by OPA1 deletion was unknown. Our results show that EPAC1 and RAP1 localize in proximity to mitochondria and in MAMs, that are emerging as hubs for mitochondria-derived signals. Moreover, EPAC1 accumulates on mitochondria upon pharmacological activation and following OPA1 silencing. OPA1 silencing results in an increase in Ca2+ and in localized cAMP increase in proximity of mitochondria that in turn activated EPAC1 and therefore RAP1. Notably, Ca2+ chelation by BAPTA-AM treatment suppress the EPAC1/RAP1 activation elicited by OPA1 downregulation. Furthermore, the analysis of angiogenic parameters like migration and tubulogenesis revealed that the blockage of EPAC1 and RAP1 signaling could correct the defects caused by OPA1 downregulation. Thus, our work places EPAC1/RAP1 in the retrograde signaling pathway connecting mitochondria to angiogenesis and highlights the intricate network of signals and second messengers that can execute transcriptional changes when mitochondria are perturbed.
Normandin, Caroline. "Identification et caractérisation de GTPases Activating Proteins spécifiques à la petite GTPase RAB21". Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11544.
Texto completoAbstract : Autophagy is defined as the lysosomal degradation and recycling of cellular constituents. At basal levels, autophagy eliminates protein aggregates or damaged organelles. In condition of stress, such as in condition of nutritional deficiency, hypoxia or cancer treatments, autophagy allow cells to adapt and survive. Therefore, autophagy is an essential system required for survival and maintenance of cellular homeostasis. It is thus essential to identify the cellular entities and mechanisms regulating this process. RAB GTPases were identified as master regulators of autophagy. These particular proteins act as molecular switches for the rapid execution of cellular responses. RABs are activated by Guanine Nucleotide Exchange Factors (GEF) whereas GTPase Activating Proteins (GAP) accelerates RAB deactivation. RAB21 is essential in the late stages of autophagy. Indeed, RAB21 is activated by nutritional deficiency, via its GEF MTMTR13, to allow trafficking of a SNARE required for autophagic flux. During starvation, RAB21 is deactivated which suggest that a GAP could negatively regulate RAB21 activity. However, to date no GAP for RAB21 has been identified. An eye modifier genetic screen in Drosophila was performed to identify potential RAB21 GAPs and some candidates were identified. As a result of this screen, the GAP TBC1D25 was identified as interacting with RAB21. Moreover, this interaction was increased by starvation. Proximity ligation assays revealed that the RAB21-TBC1D25 interaction partially localized at early endosomes. Moreover, prolonged activation of RAB5, located at early endosomes, inhibited RAB21-TBC1D25 interaction. Further experiments will be carried out to explain these results. With respect to the roles of autophagy in cancer, RAB21 was shown to be overexpressed in cells with high autophagic flux as well as in some colon cancer tumors. Importantly, the expression of Tbc1d25 in these same tumors does not appear to be increased, indicating that TBC1D25 could be an autophagic inhibitor specific to cells with a high autophagic flow. My work suggests that TBC1D25 could function as a GAP to negatively regulate RAB21 activity in condition of prolonged starvation.
Chan, King-chung Fred y 陳敬忠. "Functional characterization of StAR-related lipid transfer domain containing 13 (DLC 2) RhoGAP in the nervous system". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278449.
Texto completoChan, King-chung Fred. "Functional characterization of StAR-related lipid transfer domain containing 13 (DLC 2) RhoGAP in the nervous system". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278449.
Texto completoPaul, Florian [Verfasser]. "Developing quantitative GTPase affinity purification (qGAP) to identify interaction partners of Rho GTPases / Florian Paul". Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1069532711/34.
Texto completoPaul, Florian Ernst Rudolf Benjamin [Verfasser]. "Developing quantitative GTPase affinity purification (qGAP) to identify interaction partners of Rho GTPases / Florian Paul". Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1069532711/34.
Texto completoBery, Nicolas. "Nouvelle stratégie de ciblage de la GTPase RhoB : développement d'intracorps conformationnels sélectifs et leur fonctionnalisation en tant qu'inhibiteurs intracellulaires de l'activité de RhoB". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2734/.
Texto completoRhoB GTPase shares more than 85% of homology with RhoA and RhoC. These proteins switch between an active conformation bound to GTP and an inactive one bound to GDP. Deregulations of their expression and/or their activity are often found in many cancers. To date, no selective inhibitor of these GTPases has been developed in order to block selectively Rho's activity. This project showed an original approach targeting RhoB's activity. After a new single domain antibody library characterization, its validation using the phage display technology against various antigens gave many highly functional antibodies in many applications. Set up of a new direct screening strategy of intracellular antibody (intrabody) raised against RhoB allowed us to identify several conformational intrabodies of RhoB active form, one of them discriminating RhoB from its homologs RhoA and RhoC. Intrabody functionalization with an Fbox domain driving target to degradation led to the identification of the first efficient selective RhoB activity inhibitory strategy. These work demonstrated that RhoB activity knockdown with functionalized intrabodies increased migration and invasion of pulmonary cells. In conclusion this tool will allow to determine if RhoB activity could be a new therapeutic target and open new perspectives to study GTPases activity
Ghiaur, Gabriel. "The role of Rho GTPases in hematopoietic stem cell biology RhoA GTPase regulates adult HSC engraftment and Rac1 GTPases is important for embryonic HSC /". Cincinnati, Ohio : University of Cincinnati, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204374567.
Texto completoPeurois, François. "Activation des petites GTPases à la périphérie des membranes". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN037.
Texto completoSmall GTPases are major regulators of many cellular processes. Nucleotide exchange factors (GEF) activate small GTPases. Deregulation of the activation of small GTPases is at the origin of several diseases, such as certain diabetes and cancers. GTPases and GEFs interact together at the periphery of cell membranes. Beyond a simple place of co-localization, biological membranes have physicochemical properties directly impacting the activation of small GTPases by GEFs. This thesis project is based on three axes, 1) to propose an experimental strategy to quantitatively measure the effects of membranes in this activation 2) to establish a model of the activation at the periphery of membranes of the GEF EPAC1, a therapeutic target in heart diseases, 3) to characterize known ArfGEF inhibitory small molecules in a membrane context. The results showed that membranes modified GEF catalytic efficiency, and questioned their specificity towards small GTPases. The membranes also appear as partners for the activation of EPAC1 in cooperation with cAMP. These effects could be explained by a co-localization between GEF and GTPases on the membranes surfaces, a conformational rearrangement of the GEF induced by membranes, a modification of lateral diffusion of the GEF, or a catalytically advantageous geometry of the GEF-GTPase-membrane complex. Finally, understanding the involvement of membranes in this activation leads us to imagine new therapeutic inhibition strategies
Keller, Laura. "Conception de nano-anticorps conformationnels comme nouveaux outils d'étude de l'activité des GTPases de la sous-famille RHOA". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30005/document.
Texto completoRHOA small GTPase belongs to a subfamily acting as a molecular switch activating major signaling pathways that regulate cytoskeletal dynamics and a variety of cellular responses such as cell cycle progression, cytokinesis, migration and polarity. RHOA activity resides in a few percent of GTP loaded protein, which is finely tuned by a crosstalk between regulators of the GTPase cycle. Manipulating a single RHO at the expression level often induces imbalance in the activity of other RHO GTPases, suggesting that more specific tools targeting these active pools are needed to decipher RHOA functions in time and space. We decided to use single domain antibodies, also known as VHH or nanobodies, as a new tool for studying RHOA activation. We produced and screened a novel fully synthetic phage display library of humanized nanobodies (NaLi-H1) to develop conformational sensors of the GTP loaded active conformation of RHO subfamily. We obtained several high affinity nanobodies against RHOA's active form which we characterized as RHO active antibodies in vitro and RHO signaling blocking intrabodies in cellulo. These new tools will facilitate and improve our current knowledge of this peculiar protein subfamily and will be a paradigm for the study of other RHO related small GTPases
Libros sobre el tema "GTPasi"
Manser, Ed y Thomas Leung. GTPase Protocols. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592592813.
Texto completoJoan, Marsh y Goode Jamie, eds. The GTPase superfamily. Chichester: Wiley, 1993.
Buscar texto completoRush, Mark y Peter D’Eustachio, eds. The Small GTPase Ran. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1501-2.
Texto completoCorda, D., H. Hamm y A. Luini. GTPase-controlled molecular machines. Rome: Ares-Serono Symposia Publications, 1994.
Buscar texto completoPandey, Girdhar K., Manisha Sharma, Amita Pandey y Thiruvenkadam Shanmugam. GTPases. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11611-2.
Texto completoEd, Manser y Leung Thomas, eds. GTPase protocols: The Ras superfamily. Totowa, N.J: Humana Press, 2002.
Buscar texto completoHolmes, L. P. Gtpase protocols: The ras superfamily. [Place of publication not identified]: Humana, 2010.
Buscar texto completoLi, Guangpu y Nava Segev, eds. Rab GTPases. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1346-7.
Texto completoLi, Guangpu, ed. Rab GTPases. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2569-8.
Texto completoRivero, Francisco, ed. Rho GTPases. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-61779-442-1.
Texto completoCapítulos de libros sobre el tema "GTPasi"
Edelstein-Keshet, Leah. "Pattern Formation Inside Living Cells". En SEMA SIMAI Springer Series, 79–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_5.
Texto completoDel Pulgar, Teresa Gómez y Juan Carlos Lacal. "GTPase". En Encyclopedia of Cancer, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_2533-2.
Texto completoDel Pulgar, Teresa Gómez y Juan Carlos Lacal. "GTPase". En Encyclopedia of Cancer, 1968–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_2533.
Texto completoPulgar, Teresa Gómez Del y Juan Carlos Lacal. "GTPase". En Encyclopedia of Cancer, 1609–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2533.
Texto completoKonstantinidis, Diamantis G. y Theodosia A. Kalfa. "Rac GTPase". En Encyclopedia of Signaling Molecules, 4408–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_597.
Texto completoKonstantinidis, Diamantis G. y Theodosia A. Kalfa. "Rac GTPase". En Encyclopedia of Signaling Molecules, 1–7. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-6438-9_597-1.
Texto completoDempsey, Brian R., Anne C. Rintala-Dempsey, Gary S. Shaw, Yuan Xiao Zhu, A. Keith Stewart, Jaime O. Claudio, Constance E. Runyan et al. "Small GTPase". En Encyclopedia of Signaling Molecules, 1752. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101254.
Texto completoMcCormick, F. "GTPase Activating Proteins". En GTPases in Biology I, 345–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78267-1_23.
Texto completoStefanini, Lucia, Robert H. Lee y Wolfgang Bergmeier. "GTPases". En Platelets in Thrombotic and Non-Thrombotic Disorders, 263–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47462-5_20.
Texto completoPandey, Girdhar K., Manisha Sharma, Amita Pandey y Thiruvenkadam Shanmugam. "Overview of G Proteins (GTP-Binding Proteins) in Eukaryotes". En GTPases, 1–7. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11611-2_1.
Texto completoActas de conferencias sobre el tema "GTPasi"
Na, Sungsoo. "Engineering Tools for Studying Coordination Between Biochemical and Biomechanical Activities in Cell Migration". En ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53709.
Texto completoMondal, Subhanjan, Said Goueli y Kevin Hsiao. "Abstract C204: GTPase/GAP/GEF-Glo™: A bioluminescent system to measure GTPase, GAP, and GEF activities." En Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-c204.
Texto completoMondal, Subhanjan y Said A. Goueli. "Abstract B44: GTPase/GAP/GEF-Glo™: A bioluminescent system to measure GTPase, GAP, and GEF activities". En Abstracts: AACR Special Conference on RAS Oncogenes: From Biology to Therapy; February 24-27, 2014; Lake Buena Vista, FL. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1557-3125.rasonc14-b44.
Texto completoSchulze, J., L. Heinkele, M. Steffens, A. Warnecke, T. Lenarz, I. Just y A. Rohrbeck. "Rho-GTPase und p38 vermittelte Neuroprotektion in Spiralganglienzellen". En Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641056.
Texto completoAuthi, K. S., B. J. Evenden y N. Crawford. "ACTION OF GTPγS [GUANOSINE 5∲-0-(3-THIOPHOSPHATE)] ON SAPONIN-PERMEABILISED PLATELETS: INVOLVEMENT OF 'G' PROTEINS IN PLATELET ACTIVATION". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644514.
Texto completoWeber, Igor. "Oscillatory dynamics of small GTPase Rac1 in motile cells". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1187.
Texto completoJakobs, K. H., P. Gierschik y R. Grandt. "THE ROLE OF GTP-BINDING PROTEINS EXHIBITING GTPase ACTIVITY IN PLATELET ACTIVATION". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644773.
Texto completoAcosta, Lehi, Aaron Rogers, Jingfu Peng, Alan Mueller, Zongzhong Tong, Donghan Shin, Jae Hyuk Yoo et al. "Abstract 4367: The small GTPase ARF6 is necessary for melanomagenesis". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4367.
Texto completoSchulze, J., L. Heinkele, M. Steffens, A. Warnecke, T. Lenarz, I. Just y A. Rohrbeck. "Rho-GTPase and p38 mediated neuroprotection in spiral ganglion cells". En Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641057.
Texto completoPusapati, Ganesh Varma, An Rykx, Sandy Vandoninck, Johan van Lint, Guido Adler y Thomas Seufferlein. "Abstract 296: Protein kinase D regulates Rho GTPase activity through rhotekin". En Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-296.
Texto completoInformes sobre el tema "GTPasi"
Simpson, Kaylene J. Rho GTPase Involvement in Breast Cancer Migration and Invasion. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2005. http://dx.doi.org/10.21236/ada435395.
Texto completoSimpson, Kaylene J. Rho GTPase Involvement in Breast Cancer Migration and Invasion. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2007. http://dx.doi.org/10.21236/ada469757.
Texto completoYang, Zhenbiao. ROP GTPase Signaling in The Hormonal Regulation of Plant Growth. Office of Scientific and Technical Information (OSTI), mayo de 2013. http://dx.doi.org/10.2172/1080178.
Texto completoKandpal, Rajendra P. y G. M. Nagaraja. Involvement of a Novel Rho GTPase Activating Protein in Breast Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2001. http://dx.doi.org/10.21236/ada404607.
Texto completoBand, Vimia. Human Mammary Epithelial Cell Transformation by Rho GTPase through a Novel Mechanism. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2008. http://dx.doi.org/10.21236/ada500910.
Texto completoKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2005. http://dx.doi.org/10.21236/ada442688.
Texto completoKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2006. http://dx.doi.org/10.21236/ada456604.
Texto completoKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2004. http://dx.doi.org/10.21236/ada426448.
Texto completoKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2003. http://dx.doi.org/10.21236/ada422281.
Texto completoKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2007. http://dx.doi.org/10.21236/ada473395.
Texto completo