Siga este enlace para ver otros tipos de publicaciones sobre el tema: Graphes embeddings.

Tesis sobre el tema "Graphes embeddings"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Graphes embeddings".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Damay, Gabriel. "Dynamic Decision Trees and Community-based Graph Embeddings : towards Interpretable Machine Learning". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAT047.

Texto completo
Resumen
L'apprentissage automatique est le domaine des sciences informatiques dont le but est de créer des modèles et des solutions à partir de données sans savoir exactement les instructions qui dirigent intrinsèquement ces modèles. Ce domaine a obtenu des résultats impressionnants mais il est l'objet le sujet d'inquiétudes en raison notamment de l'impossibilité de comprendre et d'auditer les modèles qu'il produit. L'apprentissage automatique interprétable propose une solution à ces inquiétudes en créant des modèles qui sont interprétables de façon inhérante. Cette thèse contribue à l'apprentissage automatique interprétable de deux façons.Tout d'abord, nous étudions les arbres de décision. Il s'agit d'un groupe de méthodes d'apprentissage automatique très connu et qui est interprétable par la façon même dont il est conçu. Cependant, les données réelles sont souvent dynamiques et peu d'algorithmes existent pour maintenir un arbre de décision quand des données peuvent à la fois être ajoutées et supprimées de l'ensemble d'entrainement. Nous proposons un nouvel algorithme nommé FuDyADT pour résoudre ce problème.Ensuite, quand les données sont représentées sous forme de graphe, une technique d'apprentissage automatique très commune, nommée "embedding", consiste à projeter les données sur un espace vectoriel. Ce type de méthodes est cependant non-interprétable en général. Nous proposons un nouvel algorithme d'embedding appelé Parfaite, qui est basé sur la factorisation de la matrice de PageRank personnalisé. Cet algorithme est conçu pour que ses résultats soient interprétables.Nous étudions chacun de ces algorithmes sur un plan à la fois théorique et expérimental. Nous montrons que FuDyADT est au minimum comparable aux algorithmes à l'état de l'art dans les conditions habituelles, tout en étant également capable de fonctionner dans des contextes inhabituels comme dans le cas où des données sont supprimés ou dans le cas où certaines des données sont numériques. Quant à Parfaite, il produit des dimensions d'embedding qui sont alignées avec les communautés du graphe, et qui sont donc interprétables
Machine Learning is the field of computer science that interests in building models and solutions from data without knowing exactly the set of instructions internal to these models and solutions. This field has achieved great results but is now under scrutiny for the inability to understand or audit its models among other concerns. Interpretable Machine Learning addresses these concerns by building models that are inherently interpretable. This thesis contributes to Interpretable Machine Learning in two ways.First, we study Decision Trees. This is a very popular group of Machine Learning methods for classification problems and it is interpretable by design. However, real world data is often dynamic, but few algorithms can maintain a decision tree when data can be both inserted and deleted from the training set. We propose a new algorithm called FuDyADT to solve this problem.Second, when data are represented as graphs, a very common machine learning technique called "embedding" consists in projecting them onto a vectorial space. This kind of method however is usually not interpretable. We propose a new embedding algorithm called Parfaite based on the factorization of the Personalized PageRank matrix. This algorithm is designed to provide interpretable results.We study both algorithms theoretically and experimentally. We show that FuDyADT is at least comparable to state-of-the-art algorithms in the usual setting, while also being able to handle unusual settings such as deletions of data and numerical features. Parfaite on the other hand produces embedding dimensions that align with the communities of the graph, making the embedding interpretable
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Muller, Carole. "Minor-closed classes of graphs: Isometric embeddings, cut dominants and ball packings". Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331629.

Texto completo
Resumen
Une classe de graphes est close par mineurs si, pour tout graphe dans la classe et tout mineur de ce graphe, le mineur est ́egalement dans la classe. Par un fameux th ́eor`eme de Robertson et Seymour, nous savons que car- act ́eriser une telle classe peut ˆetre fait `a l’aide d’un nombre fini de mineurs exclus minimaux. Ceux-ci sont des graphes qui n’appartiennent pas `a la classe et qui sont minimaux dans le sens des mineurs pour cette propri ́et ́e.Dans cette thèse, nous étudions trois problèmes à propos de classes de graphes closes par mineurs. Les deux premiers sont reliés à la caractérisation de certaines classes de graphes, alors que le troisième étudie une relation de “packing-covering” dans des graphes excluant un mineur.Pour le premier problème, nous étudions des plongements isométriques de graphes dont les arêtes sont pondérées dans des espaces métriques. Principalement, nous nous intêressons aux espaces ell_2 et ell_∞. E ́tant donné un graphe pondéré, un plongement isométrique associe à chaque sommet du graphe un vecteur dans l’autre espace de sorte que pour chaque arête du graphe le poids de celle-ci est égal à la distance entre les vecteurs correspondant à ses sommets. Nous disons qu’une fonction de poids sur les arêtes est une fonction de distances réalisable s’il existe un tel plongement. Le paramètre f_p(G) détermine la dimension k minimale d’un espace ell_p telle que toute fonction de distances réalisable de G peut être plongée dans ell_p^k. Ce paramètre est monotone dans le sens des mineurs. Nous caractérisons les graphes tels que f_p(G) a une grande valeur en termes de mineurs inévitables pour p = 2 et p = ∞. Une famille de graphes donne des mineurs inévitables pour un invariant monotone pour les mineurs, si ces graphes “expliquent” pourquoi l’invariant est grand.Le deuxième problème étudie les mineurs exclus minimaux pour la classe de graphes avec φ(G) borné par une constante k, où φ(G) est un paramètre lié au dominant des coupes d’un graphe G. Ce polyèdre contient tous les points qui, composante par composante, sont plus grands ou égaux à une combination convexe des vecteurs d’incidence de coupes dans G. Le paramètre φ(G) est égal au membre de droite maximum d’une description linéaire du dominant des coupes de G en forme entière minimale. Nous étudions les mineurs exclus minimaux pour la propriété φ(G) <= 4 et montrons une nouvelle borne sur φ(G) en termes du “vertex cover number”.Le dernier problème est d’un autre type. Nous étudions une relation de “packing-covering” dans les classes de graphes excluant un mineur. Étant donné un graphe G, une boule de centre v et de rayon r est l’ensemble de tous les sommets de G qui sont à distance au plus r de v. Pour un graphe G et une collection de boules donnés nous pouvons définir un hypergraphe H dont les sommets sont ceux de G et les arêtes correspondent aux boules de la collection. Il est bien connu que dans l’hypergraphe H, le “transversal number” τ(H) vaut au moins le “packing number” ν(H). Nous montrons une borne supérieure sur ν(H) qui est linéaire en τ(H), résolvant ainsi un problème ouvert de Chepoi, Estellon et Vaxès.
A class of graphs is closed under taking minors if for each graph in the class and each minor of this graph, the minor is also in the class. By a famous result of Robertson and Seymour, we know that characterizing such a class can be done by identifying a finite set of minimal excluded minors, that is, graphs which do not belong to the class and are minor-minimal for this property.In this thesis, we study three problems in minor-closed classes of graphs. The first two are related to the characterization of some graph classes, while the third one studies a packing-covering relation for graphs excluding a minor.In the first problem, we study isometric embeddings of edge-weighted graphs into metric spaces. In particular, we consider ell_2- and ell_∞-spaces. Given a weighted graph, an isometric embedding maps the vertices of this graph to vectors such that for each edge of the graph the weight of the edge equals the distance between the vectors representing its ends. We say that a weight function on the edges of the graph is a realizable distance function if such an embedding exists. The minor-monotone parameter f_p(G) determines the minimum dimension k of an ell_p-space such that any realizable distance function of G is realizable in ell_p^k. We characterize graphs with large f_p(G) value in terms of unavoidable minors for p = 2 and p = ∞. Roughly speaking, a family of graphs gives unavoidable minors for a minor-monotone parameter if these graphs “explain” why the parameter is high.The second problem studies the minimal excluded minors of the class of graphs such that φ(G) is bounded by some constant k, where φ(G) is a parameter related to the cut dominant of a graph G. This unbounded polyhedron contains all points that are componentwise larger than or equal to a convex combination of incidence vectors of cuts in G. The parameter φ(G) is equal to the maximum right-hand side of a facet-defining inequality of the cut dominant of G in minimum integer form. We study minimal excluded graphs for the property φ(G) <= 4 and provide also a new bound of φ(G) in terms of the vertex cover number.The last problem has a different flavor as it studies a packing-covering relation in classes of graphs excluding a minor. Given a graph G, a ball of center v and radius r is the set of all vertices in G that are at distance at most r from v. Given a graph and a collection of balls, we can define a hypergraph H such that its vertices are the vertices of G and its edges correspond to the balls in the collection. It is well-known that, in the hypergraph H, the transversal number τ(H) is at least the packing number ν(H). We show that we can bound τ(H) from above by a linear function of ν(H) for every graphs G and ball collections H if the graph G excludes a minor, solving an open problem by Chepoi, Estellon et Vaxès.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Trouillon, Théo. "Modèles d'embeddings à valeurs complexes pour les graphes de connaissances". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM048/document.

Texto completo
Resumen
L'explosion de données relationnelles largement disponiblessous la forme de graphes de connaissances a permisle développement de multiples applications, dont les agents personnels automatiques,les systèmes de recommandation et l'amélioration desrésultats de recherche en ligne.La grande taille et l'incomplétude de ces bases de donnéesnécessite le développement de méthodes de complétionautomatiques pour rendre ces applications viables.La complétion de graphes de connaissances, aussi appeléeprédiction de liens, se doit de comprendre automatiquementla structure des larges graphes de connaissances (graphes dirigéslabellisés) pour prédire les entrées manquantes (les arêtes labellisées).Une approche gagnant en popularité consiste à représenter ungraphe de connaissances comme un tenseur d'ordre 3, etd'utiliser des méthodes de décomposition de tenseur pourprédire leurs entrées manquantes.Les modèles de factorisation existants proposent différentscompromis entre leur expressivité, et leur complexité en temps et en espace.Nous proposons un nouveau modèle appelé ComplEx, pour"Complex Embeddings", pour réconcilier expressivité etcomplexité par l'utilisation d'une factorisation en nombre complexes,dont nous explorons le lien avec la diagonalisation unitaire.Nous corroborons notre approche théoriquement en montrantque tous les graphes de connaissances possiblespeuvent être exactement décomposés par le modèle proposé.Notre approche, basées sur des embeddings complexesreste simple, car n'impliquant qu'un produit trilinéaire complexe,là où d'autres méthodes recourent à des fonctions de compositionde plus en plus compliquées pour accroître leur expressivité.Le modèle proposé ayant une complexité linéaire en tempset en espace est passable à l'échelle, tout endépassant les approches existantes sur les jeux de données de référencepour la prédiction de liens.Nous démontrons aussi la capacité de ComplEx àapprendre des représentations vectorielles utiles pour d'autres tâches,en enrichissant des embeddings de mots, qui améliorentles prédictions sur le problème de traitement automatiquedu langage d'implication entre paires de phrases.Dans la dernière partie de cette thèse, nous explorons lescapacités de modèles de factorisation à apprendre lesstructures relationnelles à partir d'observations.De part leur nature vectorielle,il est non seulement difficile d'interpréter pourquoicette classe de modèles fonctionne aussi bien,mais aussi où ils échouent et comment ils peuventêtre améliorés. Nous conduisons une étude expérimentalesur les modèles de l'état de l'art, non pas simplementpour les comparer, mais pour comprendre leur capacitésd'induction. Pour évaluer les forces et faiblessesde chaque modèle, nous créons d'abord des tâches simplesreprésentant des propriétés atomiques despropriétés des relations des graphes de connaissances ;puis des tâches représentant des inférences multi-relationnellescommunes au travers de généalogies synthétisées.À partir de ces résultatsexpérimentaux, nous proposons de nouvelles directionsde recherches pour améliorer les modèles existants,y compris ComplEx
The explosion of widely available relational datain the form of knowledge graphsenabled many applications, including automated personalagents, recommender systems and enhanced web search results.The very large size and notorious incompleteness of these data basescalls for automatic knowledge graph completion methods to make these applicationsviable. Knowledge graph completion, also known as link-prediction,deals with automatically understandingthe structure of large knowledge graphs---labeled directed graphs---topredict missing entries---labeled edges. An increasinglypopular approach consists in representing knowledge graphs as third-order tensors,and using tensor factorization methods to predict their missing entries.State-of-the-art factorization models propose different trade-offs between modelingexpressiveness, and time and space complexity. We introduce a newmodel, ComplEx---for Complex Embeddings---to reconcile both expressivenessand complexity through the use of complex-valued factorization, and exploreits link with unitary diagonalization.We corroborate our approach theoretically and show that all possibleknowledge graphs can be exactly decomposed by the proposed model.Our approach based on complex embeddings is arguably simple,as it only involves a complex-valued trilinear product,whereas other methods resort to more and more complicated compositionfunctions to increase their expressiveness. The proposed ComplEx model isscalable to large data sets as it remains linear in both space and time, whileconsistently outperforming alternative approaches on standardlink-prediction benchmarks. We also demonstrateits ability to learn useful vectorial representations for other tasks,by enhancing word embeddings that improve performanceson the natural language problem of entailment recognitionbetween pair of sentences.In the last part of this thesis, we explore factorization models abilityto learn relational patterns from observed data.By their vectorial nature, it is not only hard to interpretwhy this class of models works so well,but also to understand where they fail andhow they might be improved. We conduct an experimentalsurvey of state-of-the-art models, not towardsa purely comparative end, but as a means to get insightabout their inductive abilities.To assess the strengths and weaknesses of each model, we create simple tasksthat exhibit first, atomic properties of knowledge graph relations,and then, common inter-relational inference through synthetic genealogies.Based on these experimental results, we propose new researchdirections to improve on existing models, including ComplEx
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Liu, Jixiong. "Semantic Annotations for Tabular Data Using Embeddings : Application to Datasets Indexing and Table Augmentation". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS529.

Texto completo
Resumen
Avec le développement de l'Open Data, un grand nombre de sources de données sont mises à disposition des communautés (notamment les data scientists et les data analysts). Ces données constituent des sources importantes pour les services numériques sous réserve que les données soient nettoyées, non biaisées, et combinées à une sémantique explicite et compréhensible par les algorithmes afin de favoriser leur exploitation. En particulier, les sources de données structurées (CSV, JSON, XML, etc.) constituent la matière première de nombreux processus de science des données. Cependant, ces données proviennent de différents domaines pour lesquels l'expertise des consommateurs des données peut être limitée (knowledge gap). Ainsi, l'appropriation des données, étape critique pour la création de modèles d'apprentissage automatique de qualité, peut être complexe.Les modèles sémantiques (en particulier, les ontologies) permettent de représenter explicitement le sens des données en spécifiant les concepts et les relations présents dans les données. L'association d'étiquettes sémantiques aux ensembles de données facilite la compréhension et la réutilisation des données en fournissant une documentation sur les données qui peut être facilement utilisée par un non-expert. De plus, l'annotation sémantique ouvre la voie à des modes de recherche qui vont au-delà de simples mots-clés et permettent l'expression de requêtes d'un haut niveau conceptuel sur le contenu des jeux de données mais aussi leur structure tout en surmontant les problèmes d'hétérogénéité syntaxique rencontrés dans les données tabulaires. Cette thèse introduit un pipeline complet pour l'extraction, l'interprétation et les applications de tableaux de données à l'aide de graphes de connaissances. Nous rappelons tout d'abord la définition des tableaux du point de vue de leur interprétation et nous développons des systèmes de collecte et d'extraction de tableaux sur le Web et dans des fichiers locaux. Nous proposons ensuite trois systèmes d'interprétation de tableaux basés sur des règles heuristiques ou sur des modèles de représentation de graphes, afin de relever les défis observés dans la littérature. Enfin, nous présentons et évaluons deux applications d'augmentation des tables tirant parti des annotations sémantiques produites: l'imputation des données et l'augmentation des schémas
With the development of Open Data, a large number of data sources are made available to communities (including data scientists and data analysts). This data is the treasure of digital services as long as data is cleaned, unbiased, as well as combined with explicit and machine-processable semantics in order to foster exploitation. In particular, structured data sources (CSV, JSON, XML, etc.) are the raw material for many data science processes. However, this data derives from different domains for which consumers are not always familiar with (knowledge gap), which complicates their appropriation, while this is a critical step in creating machine learning models. Semantic models (in particular, ontologies) make it possible to explicitly represent the implicit meaning of data by specifying the concepts and relationships present in the data. The provision of semantic labels on datasets facilitates the understanding and reuse of data by providing documentation on the data that can be easily used by a non-expert. Moreover, semantic annotation opens the way to search modes that go beyond simple keywords and allow the use of queries of a high conceptual level on the content of the datasets but also their structure while overcoming the problems of syntactic heterogeneity encountered in tabular data. This thesis introduces a complete pipeline for the extraction, interpretation, and applications of tables in the wild with the help of knowledge graphs. We first refresh the exiting definition of tables from the perspective of table interpretation and develop systems for collecting and extracting tables on the Web and local files. Three table interpretation systems are further proposed based on either heuristic rules or graph representation models facing the challenges observed from the literature. Finally, we introduce and evaluate two table augmentation applications based on semantic annotations, namely data imputation and schema augmentation
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Boudin, Marina. "Approche computationnelle pour le repositionnement de médicament au travers d’une perspective holistique avec les graphes de connaissances (OREGANO)". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0019.

Texto completo
Resumen
La découverte de médicaments est un processus long et coûteux. Le repositionnement de médicaments est une alternative prometteuse qui consiste à trouver de nouvelles indications pour des médicaments existants. En comparant de grandes quantités d’informations sur les médicaments qui ont échoué aux dernières phases des essais cliniques ou qui ont obtenu une autorisation de mise sur le marché, et donc commercialisés, il est possible de trouver des médicaments candidats au repositionnement capables de traiter une affection pour laquelle ils n’ont pas été développés initialement. Pour comparer tous ces médicaments, les méthodes computationnelles s’appuyant sur de grandes bases de données sont privilégiées pour leur efficacité, leur rapidité et leur capacité à croiser de grandes quantités d’informations. Les graphes de connaissances sont des structures appropriées pour intégrer ces informations de nature hétérogène. Un graphe de connaissances organise ces informations en triplets composés d’un sujet, d’un objet et d’un prédicat explicitant la relation entre le sujet et l’objet. Ce graphe, combiné à des techniques de plongement de nœuds (apprentissage automatique), permet de prédire de nouvelles relations entre sujets et objets (qui sont des nœuds du graphe). Il est donc possible de transformer le problème de repositionnement en un problème de découverte de nouveaux liens dans un graphe. Cette thèse s’intéresse à ces problématiques dans le cadre du projet OREGANO visant à construire un large graphe de connaissances sur les médicaments et à appliquer des techniques de plongement de nœuds pour le repositionnement de médicaments. Ces techniques "projettent" le graphe dans un espace vectoriel où chaque entité est représentée par un vecteur. Une des innovations apportées par OREGANO est également d’inclure des données sur des composés naturels dont les propriétés médicinales sont exploitées dans de nombreux pays et dont les potentialités de repositionnement ont été peu explorées. Dans un premier temps, nous présentons la manière dont nous avons conçu le graphe de connaissances OREGANO, en considérant deux approches d’intégration distinctes. Nous exposons ensuite les évolutions qui ont été apportées au graphe au fil des versions. Dans un troisième temps, nous exposons la capacité du graphe de connaissances OREGANO à prédire de nouveaux liens grâce à des techniques de plongement de nœuds. Les prédictions sont évaluées avec les métriques habituelles et empiriquement dans le cadre du repositionnement de médicaments. Le graphe OREGANO ainsi que les développements des algorithmes et du code sont disponibles pour la communauté scientifique à l’adresse suivante : https://gitub.u-bordeaux.fr/erias/oregano
Drug discovery is a long and costly process. Drug repositioning is a promising alternative which involves finding new indications for existing drugs. By comparing large quantities of information on drugs that have failed in the final phases of clinical trials, or that have been granted marketing authorization and are now on the market, it is possible to find candidate repositioning drugs capable of treating a condition for which they were not initially developed. To compare all these drugs, computational methods, based on large databases, are favored for their efficiency, speed and ability to analyze large quantities of information. Knowledge graphs are ideal structures for integrating this heterogeneous information. A knowledge graph organizes its information into triplets consisting of a subject, an object and a predicate explaining the relationship between the subject and the object. This graph, combined with embedding techniques (machine learning), can be used to predict new relationships between subjects and objects (which are nodes in the graph). It is therefore possible to transform the problem of repositioning into a problem of discovering new links in a graph. This thesis addresses these issues in the context of the OREGANO project, which aims to build a large knowledge graph on drugs and apply node-plotting techniques for drug repositioning. These techniques “project” the graph into a vector space where each entity is represented by a vector. One of OREGANO’s innovations is also to include data on natural compounds whose medicinal properties are exploited in many countries, and whose repositioning potential has been little explored. First, we present the way in which we designed the OREGANO knowledge graph, considering two distinct integration approaches. We then describe the evolutions that have been made to the graph over the years. Thirdly, we demonstrate the ability of the OREGANO knowledge graph to predict new links using embedding techniques. Predictions are evaluated with the usual metrics and empirically in the context of drug repositioning. The OREGANO graph as well as the algorithm and code developments are made available to the community at https://gitub.u-bordeaux.fr/erias/oregano
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Le, coz Corentin. "Separation and Poincaré profiles Separation profiles, isoperimetry, growth and compression Poincaré profiles of lamplighter diagonal products". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM014.

Texto completo
Resumen
Ce manuscrit de thèse récapitule mes travaux de recherche sur les profils de séparation et de Poincaré. Le profil de séparation est apparu en 2012 dans un l'article fondateur de Benjamini, Schramm et Timár. La définition donnée tirait ses origines dans des travaux antérieurs, dans le domaine du calcul formel : principalement des études de Lipton et Trajan concernant les graphes planaires, et de Miller, Teng, Thurston et Vavasis concernant des graphes d'intersection. Le profil de séparation est maintenant utilisé en théorie géométrique des groupes, mon domaine de recherche, à cause de sa propriété de monotonie par plongements grossiers. Il a été généralisé par Hume, Mackay et Tessera en 2019 en une gamme continue de profils, appelés profils de Poincaré
The goal of this thesis report is to present my research concerning separation and Poincaré profiles. Separation profile first appeared in 2012 in a seminal article written by Benjamini, Schramm and Timár. This definition was based on preceding research, in the field of computer science, mainly work of Lipton and Trajan concerning planar graphs, and of Miller, Teng, Thurston and Vavasis concerning overlap graphs. The separation profile plays now a role in geometric group theory, where my personal interests lies, because of its property of monotonicity under coarse embeddings. It was generalized by Hume, Mackay and Tessera in 2019 to a spectrum of profiles, called the Poincaré profiles
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Prouteau, Thibault. "Graphs,Words, and Communities : converging paths to interpretability with a frugal embedding framework". Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1006.

Texto completo
Resumen
L'apprentissage de représentations au travers des méthodes de plongements de mots (word embedding) et de graphes (graph embedding) permet des représentations distribuées de l'information. Ces représentations peuvent à leur tour être utilisées en entrée d'algorithmes d'apprentissage automatique. Au cours des deux dernières décennies, les tâches de plongement de nœuds et de mots sont passées d'approches par factorisation matricielle qui pouvaient être réalisées en quelques minutes à de grands modèles nécessitant des quantités toujours plus importantes de données d’apprentissage et parfois des semaines sur de grandes architectures matérielles. Toutefois, dans un contexte de réchauffement climatique où la durabilité est une préoccupation essentielle, il peut être souhaitable de revenir à des méthodes plus frugales comme elles pouvaient l’être par le passé. En outre, avec l'implication croissante des plongements dans des applications sensibles de l’apprentissage automatique (système judiciaire, santé), le besoin de représentations plus interprétables et explicables s'est manifesté. Pour favoriser l'apprentissage de représentations efficaces et l'interprétabilité, cette thèse présente Lower Dimension Bipartite Graph Framework (LDBGF), un framework de plongements de nœuds capable d’extraire une représentation vectorielle avec le même pipeline de traitement, à condition que les données proviennent d’un graphe ou de texte issu de grands corpus représentés sous forme de réseaux de cooccurrence. Dans ce cadre, nous présentons deux implémentations (SINr- NR, SINr-MF) qui tirent parti de la détection des communautés dans les réseaux pour découvrir un espace latent dans lequel les éléments (nœuds/mots) sont représentés en fonction de leurs liens avec les communautés. Nous montrons que SINr-NR et SINr-MF peuvent rivaliser avec des approches de plongements concurrentes sur des tâches telles que la prédiction des liens manquants dans les réseaux (link prediction) ou certaines caractéristiques des nœuds (centralité de degré, score PageRank). En ce qui concerne les plongements de mots, nous montrons que SINr-NR est un bon candidat pour représenter les mots en utilisant les réseaux de cooccurrences de mots. Enfin, nous démontrons l'interprétabilité de SINr-NR sur plusieurs aspects. Tout d'abord, une évaluation humaine montre que les dimensions de SINr-NR sont dans une certaine mesure interprétables. Ensuite, nous étudions la parcimonie des vecteurs. Notamment, combien un nombre réduit de dimensions peut permettre d'interpréter comment ces dernières se combinent et permettent de dégager un sens
Representation learning with word and graph embedding models allows distributed representations of information that can in turn be used in input of machine learning algorithms. Through the last two decades, the tasks of embedding graphs’ nodes and words have shifted from matrix factorization approaches that could be trained in a matter of minutes to large models requiring ever larger quantities of training data and sometimes weeks on large hardware architectures. However, in a context of global warming where sustainability is a critical concern, we ought to look back to previous approaches and consider their performances with regard to resources consumption. Furthermore, with the growing involvement of embeddings in sensitive machine learning applications (judiciary system, health), the need for more interpretable and explainable representations has manifested. To foster efficient representation learning and interpretability, this thesis introduces Lower Dimension Bipartite Graph Framework (LDBGF), a node embedding framework able to embed with the same pipeline graph data and text from large corpora represented as co-occurrence networks. Within this framework, we introduce two implementations (SINr-NR, SINr-MF) that leverage community detection in networks to uncover a latent embedding space where items (nodes/words) are represented according to their links to communities. We show that SINr-NR and SINr-MF can compete with similar embedding approaches on tasks such as predicting missing links in networks (link prediction) or node features (degree centrality, PageRank score). Regarding word embeddings, we show that SINr-NR is a good contender to represent words via word co-occurrence networks. Finally, we demonstrate the interpretability of SINr-NR on multiple aspects. First with a human evaluation that shows that SINr-NR’s dimensions are to some extent interpretable. Secondly, by investigating sparsity of vectors, and how having fewer dimensions may allow interpreting how the dimensions combine and allow sense to emerge
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tahraoui, Mohammed Amin. "Coloring, packing and embedding of graphs". Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.

Texto completo
Resumen
In this thesis, we investigate some problems in graph theory, namelythe graph coloring problem, the graph packing problem and tree pattern matchingfor XML query processing. The common point between these problems is that theyuse labeled graphs.In the first part, we study a new coloring parameter of graphs called the gapvertex-distinguishing edge coloring. It consists in an edge-coloring of a graph G whichinduces a vertex distinguishing labeling of G such that the label of each vertex isgiven by the difference between the highest and the lowest colors of its adjacentedges. The minimum number of colors required for a gap vertex-distinguishing edgecoloring of G is called the gap chromatic number of G and is denoted by gap(G).We will compute this parameter for a large set of graphs G of order n and we evenprove that gap(G) 2 fn E 1; n; n + 1g.In the second part, we focus on graph packing problems, which is an area ofgraph theory that has grown significantly over the past several years. However, themajority of existing works focuses on unlabeled graphs. In this thesis, we introducefor the first time the packing problem for a vertex labeled graph. Roughly speaking,it consists of graph packing which preserves the labels of the vertices. We studythe corresponding optimization parameter on several classes of graphs, as well asfinding general bounds and characterizations.The last part deal with the query processing of a core subset of XML query languages:XML twig queries. An XML twig query, represented as a small query tree,is essentially a complex selection on the structure of an XML document. Matching atwig query means finding all the occurrences of the query tree embedded in the XMLdata tree. Many holistic twig join algorithms have been proposed to match XMLtwig pattern. Most of these algorithms find twig pattern matching in two steps. Inthe first one, a query tree is decomposed into smaller pieces, and solutions againstthese pieces are found. In the second step, all of these partial solutions are joinedtogether to generate the final solutions. In this part, we propose a novel holistictwig join algorithm, called TwigStack++, which features two main improvementsin the decomposition and matching phase. The proposed solutions are shown to beefficient and scalable, and should be helpful for the future research on efficient queryprocessing in a large XML database.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lisena, Pasquale. "Knowledge-based music recommendation : models, algorithms and exploratory search". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.

Texto completo
Resumen
Représenter l'information décrivant la musique est une activité complexe, qui implique différentes sous-tâches. Ce manuscrit de thèse porte principalement sur la musique classique et étudie comment représenter et exploiter ses informations. L'objectif principal est l'étude de stratégies de représentation et de découverte des connaissances appliquées à la musique classique, dans des domaines tels que la production de base de connaissances, la prédiction de métadonnées et les systèmes de recommandation. Nous proposons une architecture pour la gestion des métadonnées de musique à l'aide des technologies du Web Sémantique. Nous introduisons une ontologie spécialisée et un ensemble de vocabulaires contrôlés pour les différents concepts spécifiques à la musique. Ensuite, nous présentons une approche de conversion des données, afin d’aller au-delà de la pratique bibliothécaire actuellement utilisée, en s’appuyant sur des règles de mapping et sur l’interconnexion avec des vocabulaires contrôlés. Enfin, nous montrons comment ces données peuvent être exploitées. En particulier, nous étudions des approches basées sur des plongements calculés sur des métadonnées structurées, des titres et de la musique symbolique pour classer et recommander de la musique. Plusieurs applications de démonstration ont été réalisées pour tester les approches et les ressources précédentes
Representing the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bekkouch, Imad Eddine Ibrahim. "Auxiliary learning & Adversarial training pour les études des manuscrits médiévaux". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUL014.

Texto completo
Resumen
Cette thèse se situe à l'intersection de la musicologie et de l'intelligence artificielle, et vise à exploiter l'IA pour aider les musicologues dans leur travail répétitif, comme la recherche d'objets dans les manuscrits du musée. Nous avons annoté quatre nouveaux ensembles de données pour l'étude des manuscrits médiévaux : AMIMO, AnnMusiconis, AnnVihuelas et MMSD. Dans la deuxième partie, nous améliorons les performances des détecteurs d'objets en utilisant des techniques de Transfer learning et de Few Shot Object Detection.Dans la troisième partie, nous discutons d'une approche puissante de Domain Adaptation, qui est auxiliary learning, où nous formons le modèle sur la tâche cible et une tâche supplémentaire qui permet une meilleure stabilisation du modèle et réduit le over-fitting.Enfin, nous abordons l'apprentissage auto-supervisé, qui n'utilise pas de méta-données supplémentaires en tirant parti de l'approche de adversarial learning, forçant le modèle à extraire des caractéristiques indépendantes du domaine
This thesis is at the intersection of musicology and artificial intelligence, aiming to leverage AI to help musicologists with repetitive work, such as object searching in the museum's manuscripts. We annotated four new datasets for medieval manuscript studies: AMIMO, AnnMusiconis, AnnVihuelas, and MMSD. In the second part, we improve object detectors' performances using Transfer learning techniques and Few Shot Object Detection.In the third part, we discuss a powerful approach to Domain Adaptation, which is auxiliary learning, where we train the model on the target task and an extra task that allows for better stabilization of the model and reduces over-fitting.Finally, we discuss self-supervised learning, which does not use extra meta-data by leveraging the adversarial learning approach, forcing the model to extract domain-independent features
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Luqman, Muhammad Muzzamil. "Fuzzy multilevel graph embedding for recognition, indexing and retrieval of graphic document images". Thesis, Tours, 2012. http://www.theses.fr/2012TOUR4005/document.

Texto completo
Resumen
Cette thèse aborde le problème du manque de performance des outils exploitant des représentationsà base de graphes en reconnaissance des formes. Nous proposons de contribuer aux nouvellesméthodes proposant de tirer partie, à la fois, de la richesse des méthodes structurelles et de la rapidité des méthodes de reconnaissance de formes statistiques. Deux principales contributions sontprésentées dans ce manuscrit. La première correspond à la proposition d'une nouvelle méthode deprojection explicite de graphes procédant par analyse multi-facettes des graphes. Cette méthodeeffectue une caractérisation des graphes suivant différents niveaux qui correspondent, selon nous,aux point-clés des représentations à base de graphes. Il s'agit de capturer l'information portéepar un graphe au niveau global, au niveau structure et au niveau local ou élémentaire. Ces informationscapturées sont encapsulés dans un vecteur de caractéristiques numériques employantdes histogrammes flous. La méthode proposée utilise, de plus, un mécanisme d'apprentissage nonsupervisée pour adapter automatiquement ses paramètres en fonction de la base de graphes àtraiter sans nécessité de phase d'apprentissage préalable. La deuxième contribution correspondà la mise en place d'une architecture pour l'indexation de masses de graphes afin de permettre,par la suite, la recherche de sous-graphes présents dans cette base. Cette architecture utilise laméthode précédente de projection explicite de graphes appliquée sur toutes les cliques d'ordre 2pouvant être extraites des graphes présents dans la base à indexer afin de pouvoir les classifier.Cette classification permet de constituer l'index qui sert de base à la description des graphes etdonc à leur indexation en ne nécessitant aucune base d'apprentissage pré-étiquetées. La méthodeproposée est applicable à de nombreux domaines, apportant la souplesse d'un système de requêtepar l'exemple et la granularité des techniques d'extraction ciblée (focused retrieval)
This thesis addresses the problem of lack of efficient computational tools for graph based structural pattern recognition approaches and proposes to exploit computational strength of statistical pattern recognition. It has two fold contributions. The first contribution is a new method of explicit graph embedding. The proposed graph embedding method exploits multilevel analysis of graph for extracting graph level information, structural level information and elementary level information from graphs. It embeds this information into a numeric feature vector. The method employs fuzzy overlapping trapezoidal intervals for addressing the noise sensitivity of graph representations and for minimizing the information loss while mapping from continuous graph space to discrete vector space. The method has unsupervised learning abilities and is capable of automatically adapting its parameters to underlying graph dataset. The second contribution is a framework for automatic indexing of graph repositories for graph retrieval and subgraph spotting. This framework exploits explicit graph embedding for representing the cliques of order 2 by numeric feature vectors, together with classification and clustering tools for automatically indexing a graph repository. It does not require a labeled learning set and can be easily deployed to a range of application domains, offering ease of query by example (QBE) and granularity of focused retrieval
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Besomi, Ormazábal Guido Andrés. "Tree embeddings in dense graphs". Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/164009.

Texto completo
Resumen
Magíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadas
Memoria para optar al título de Ingeniero Civil Matemático
En 1995 Komlós, Sárközy y Szemerédi probaron que para cualquier $\delta>0$ y cualquier entero positivo $\Delta$, todo grafo $G$ de orden $n$, con $n$ suficientemente grande, que satisfaga $\delta(G)\geq (1+\delta)\frac{n}{2}$, contiene como subgrafo a todo árbol de $n$ vértices y grado máximo acotado por $\Delta$. En esta memoria se presentan dos posibles generalizaciones de este resultado, estableciendo condiciones suficientes para el \textit{embedding} de árboles de orden $k$ en grafos con grado mínimo al menos $(1+\delta)\frac{k}{2}$, donde $k$ es lineal en el orden del grafo anfitrión. En 1963 Erd\H{o}s y Sós conjeturaron que, dado un entero $k$, un grafo $G$ con grado promedio mayor que $k-1$ debería contener todos los árboles en $k$ aristas como subgrafos. Como consecuencia de uno de los resultados principales de esta memoria, se demuestra una versión parcial de la conjetura de Erd\H{o}s-Sós. Siguiendo la linea del \textit{embedding} de árboles en grafos con condiciones de grado mínimo, Havet, Reed, Stein y Wood conjeturaron el 2016 que todo grafo con grado mínimo al menos $\lfloor\frac{2k}{3}\rfloor$ y grado máximo al menos $k$ contiene todo árbol con $k$ aristas como subgrafo. Las técnicas aquí desarrolladas permiten, adicionalmente, probar una versión parcial de esta conjetura.
CMM - Conicyt PIA AFB170001
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Boschin, Armand. "Machine learning techniques for automatic knowledge graph completion". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT016.

Texto completo
Resumen
Un graphe de connaissances est un graphe orienté dont les nœuds sont des entités et les arêtes, typées par une relation, représentent des faits connus liant les entités. Ces graphes sont capables d'encoder une grande variété d'information mais leur construction et leur exploitation peut se révéler complexe. Historiquement, des méthodes symboliques ont permis d'extraire des règles d'interaction entre entités et relations, afin de corriger des anomalies ou de prédire des faits manquants. Plus récemment, des méthodes d'apprentissage de représentations vectorielles, ou plongements, ont tenté de résoudre ces mêmes tâches. Initialement purement algébriques ou géométriques, ces méthodes se sont complexifiées avec les réseaux de neurones profonds et ont parfois été combinées à des techniques symboliques antérieures.Dans cette thèse, on s'intéresse tout d'abord au problème de l'implémentation. En effet, la grande diversité des bibliothèques utilisées rend difficile la comparaison des résultats obtenus par différents modèles. Dans ce contexte, la bibliothèque Python TorchKGE a été développée afin de proposer un environnement unique pour l'implémentation de modèles de plongement et un module hautement efficace d'évaluation par prédiction de liens. Cette bibliothèque repose sur l'accélération graphique de calculs tensoriels proposée par PyTorch, est compatible avec les bibliothèques d'optimisation usuelles et est disponible en source ouverte.Ensuite, les travaux portent sur l'enrichissement automatique de Wikidata par typage des hyperliens liant les articles de Wikipedia. Une étude préliminaire a montré que le graphe des articles de Wikipedia est beaucoup plus dense que le graphe de connaissances correspondant dans Wikidata. Une nouvelle méthode d'entrainement impliquant les relations et une méthode d'inférence utilisant les types des entités ont été proposées et des expériences ont montré la pertinence de l'approche, y compris sur un nouveau jeu de données.Enfin, le typage automatique d'entités est exploré comme une tâche de classification hiérarchique. Ceci a mené à la conception d'une fonction d'erreur hiérarchique, utilisée pour l'entrainement de modèles tensoriels, ainsi qu'un nouveau type d'encodeur. Des expériences ont permis une bonne compréhension de l'impact que peut avoir une connaissance a priori de la taxonomie des classes sur la classification. Elles ont aussi renforcé l'intuition que la hiérarchie peut être apprise à partir des données si le jeu est suffisamment riche
A knowledge graph is a directed graph in which nodes are entities and edges, typed by a relation, represent known facts linking two entities. These graphs can encode a wide variety of information, but their construction and exploitation can be complex. Historically, symbolic methods have been used to extract rules about entities and relations, to correct anomalies or to predict missing facts. More recently, techniques of representation learning, or embeddings, have attempted to solve these same tasks. Initially purely algebraic or geometric, these methods have become more complex with deep neural networks and have sometimes been combined with pre-existing symbolic techniques.In this thesis, we first focus on the problem of implementation. Indeed, the diversity of libraries used makes the comparison of results obtained by different models a complex task. In this context, the Python library TorchKGE was developed to provide a unique setup for the implementation of embedding models and a highly efficient inference evaluation module. This library relies on graphic acceleration of tensor computation provided by PyTorch, is compatible with widespread optimization libraries and is available as open source.We then consider the automatic enrichment of Wikidata by typing the hyperlinks linking Wikipedia pages. A preliminary study showed that the graph of Wikipedia articles is much denser than the corresponding knowledge graph in Wikidata. A new training method involving relations and an inference method using entity types were proposed and experiments showed the relevance of the combined approach, including on a new dataset.Finally, we explore automatic entity typing as a hierarchical classification task. That led to the design of a new hierarchical loss used to train tensor-based models along with a new type of encoder. Experiments on two datasets have allowed a good understanding of the impact a prior knowledge of class taxonomy can have on a classifier but also reinforced the intuition that the hierarchy can be learned from the features if the dataset is large enough
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Turner, Bethany. "Embeddings of Product Graphs Where One Factor is a Hypercube". VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2455.

Texto completo
Resumen
Voltage graph theory can be used to describe embeddings of product graphs if one factor is a Cayley graph. We use voltage graphs to explore embeddings of various products where one factor is a hypercube, describing some minimal and symmetrical embeddings. We then define a graph product, the weak symmetric difference, and illustrate a voltage graph construction useful for obtaining an embedding of the weak symmetric difference of an arbitrary graph with a hypercube.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Cooley, Oliver Josef Nikolaus. "Embedding Problems for Graphs and Hypergraphs". Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/766/.

Texto completo
Resumen
This thesis deals with the problem of finding some substructure within a large graph or hypergraph. In the case of graphs, we consider the substructures consisting of fixed subgraphs or families of subgraphs, perfect graph packings and spanning subgraphs. In the case of hypergraphs we consider the substructure consisting of a hypergraph whose order is linear in the order of the large hypergraph. I will show how these problems are extensions of more basic and well-known results in graph theory. I will give full proofs of three new embedding results, two for graphs and one for hypergraphs. I will also discuss the regularity lemma for graphs and hypergraphs, an important tool which underpins these and many similar embedding results. Finally, I will also discuss graph and hypergraph Ramsey numbers, since two of the embedding results have important applications to Ramsey numbers which improve upon previously known results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Treglown, Andrew Clark. "Embedding problems in graphs and hypergraphs". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1345/.

Texto completo
Resumen
The first part of this thesis concerns perfect matchings and their generalisations. We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph, thereby answering a question of Hàn, Person and Schacht. We say that a graph \(G\) has a perfect \(H\)-packing (also called an \(H\) - factor) if there exists a set of disjoint copies of \(H\) in \(G\) which together cover all the vertices of \(G\). Given a graph \(H\), we determine, asymptotically, the Ore-type degree condition which ensures that a graph \(G\) has a perfect \(H\)-packing. The second part of the thesis concerns Hamilton cycles in directed graphs. We give a condition on the degree sequences of a digraph \(G\) that ensures \(G\) is Hamiltonian. This gives an approximate solution to a problem of Nash-Williams concerning a digraph analogue of Chvatal's theorem. We also show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \(\eta\) >0 every regular tournament \(G\) of sufficiently large order n contains at least (1/2- \(\eta\))n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Randby, Scott P. "Embedding K? in 4-connected graphs /". The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487759055158486.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Erten, Cesim. "Simultaneous embedding and visualization of graphs". Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/290066.

Texto completo
Resumen
Graph embedding and visualization problems arise in relational information visualization. The two primary goals in graph visualization are drawings that convey the relationships in the underlying data and drawings that are aesthetically pleasing. Often, we have a series of related graphs that we would like to compare. In such cases it is also important to preserve the mental map between the drawings of different graphs so that the relationship between the graphs is clearly visible. For simultaneous drawing of graphs, we first present a linear-time algorithm to simultaneously embed a planar graph and its dual on an integer grid, so that the dual vertices are placed inside their corresponding primal faces and the dual edges cross their primal edges. The area of the display grid is (2n - 2) x (2n - 2) where n is the number of vertices in the graphs. We then present the problem of simultaneous embedding of planar graphs defined on the same set of vertices. In this case we would like to embed the graphs so that the matched vertices of the graphs are placed at the exact same locations and the individual drawings of the graphs are crossing-free. First we consider restricted classes of planar graphs such as paths, cycles, and caterpillars. We provide algorithms to embed two such graphs on small-area grids. We then show that there are some classes of planar graphs for which simultaneous embedding is not possible. We also consider a version of the problem where there is no mapping between the vertices of the graphs and we provide an algorithm to embed a planar graph and an outerplanar graph on an O(n²) x O(n²) grid. We provide heuristic algorithms for simultaneously embedding general graphs and the visualization tecniques we employ to display them. We present three heuristic embedding algorithms and three different visualizations suitable for each of the embedding algorithms. We describe our system that implements these algorithms and techniques. As a technique that helps simultaneous visualization of graphs we describe morphing. We discuss the disadvantages of a commonly used morphing technique, linear morphing, in terms of mental map preservation. Then we provide our algorithm to morph a source planar drawing into a target planar drawing smoothly and without creating any edge-crossings throughout the morph. This technique helps preserve the mental map between the different drawings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Rocha, Mário. "The embedding of complete bipartite graphs onto grids with a minimum grid cutwidth". CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Knox, Fiachra. "Embedding spanning structures in graphs and hypergraphs". Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4027/.

Texto completo
Resumen
In this thesis we prove three main results on embeddings of spanning subgraphs into graphs and hypergraphs. The first is that for log⁵⁰ n/n \ ≤ p ≤ 1-n⁻¹/⁴ log⁹ n, a binomial random graph G ~ G_n,p contains with high probability a collection of └δ(G)/2┘ edge disjoint Hamilton cycles (plus an additional edge-disjoint matching if δ(G) is odd), which confirms for this range of p a conjecture of Frieze and Krivelevich. Secondly, we show that any 'robustly expanding' graph with linear minimum degree on sufficiently many vertices contains every bipartite graph on the same number of vertices with bounded maximum degree and sublinear bandwidth. As corollaries we obtain the same result for any graph which satisfies the Ore-type condition d(x) + d(y) ≥ (1 + η)n for non-adjacent vertices x and y, or which satisfies a certain degree sequence condition. Thirdly, for γ > 0 we give a polynomial-time algorithm for determining whether or not a k-graph with minimum codegree at least (1/k + γ)n contains a perfect matching. This essentially answers a question of Rodl, Rucinski and Szemeredi. Our algorithm relies on a strengthening of a structural result of Keevash and Mycroft. Finally and additionally, we include a short note on Maker-Breaker games.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ehard, Stefan [Verfasser]. "Embeddings and decompositions of graphs and hypergraphs / Stefan Ehard". Ulm : Universität Ulm, 2021. http://d-nb.info/1224969421/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Mihalisin, James Edward. "Polytopal digraphs and non-polytopal facet graphs /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5760.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Henderson, Matthew James. "Embedding Symmetric Latin Squares and Edge-Coloured graphs". Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485356.

Texto completo
Resumen
In this thesis the closely related problems of embedding symmetric latin rectangles and embedding properly edge-coloured complete graphs are considered. The thesis is divided into three parts. The first part is an introductio~ and survey about completing partial latin squares and embedding latin rectangles. The second part is a proof of a former conjecture of Dugdale and Hilton about embedding edge-coloured complete graphs and the third and final part is a partial generalisation of the second part to the problem of embedding symmetric latin squares.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sonnet, Henry. "Embedding metadata in computer graphics for interaction". [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984708545.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bloyet, Nicolas. "Caractérisation et plongement de sous-graphes colorés : application à la construction de modèles structures à activité (QSAR)". Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS546.

Texto completo
Resumen
Dans le domaine de la chimie, il est intéressant de pouvoir estimer des propriétés physico- chimiques de molécules, notamment pour des applications industrielles. Celles-ci sont difficiles à estimer par simulations physique, présentant une complexité temporelle prohibitive. L'émergence des données (publiques ou privées) ouvre toutefois de nouvelles perspectives pour le traitement de ces problèmes par des méthodes statistiques et d'apprentissage automatique. La principale difficulté réside dans la caractérisation des molécules : celles-ci s'apparentent davantage à un réseau d'atomes (autrement dit un graphe coloré) qu'à un vecteur. Or, les méthodes de modélisation statistiques traitent usuellement avec des observations encodées comme telles, d'où la nécessité de méthodes spécifiques, nommées relations structures-activité, traitant des observations encodées sous forme de graphes. Le but de cette thèse est de tirer parti des corpus publics pour apprendre les meilleures représentations possibles de ces structures, et de transférer cette connaissance globale vers des jeux de données plus restreints. Nous nous inspirons pour ce faire de méthodes utilisées en traitement automatique des langages naturels. Pour les mettre en œuvre, des travaux d'ordre plus théorique ont été nécessaires, notamment sur le problème d'isomorphisme de graphes. Les résultats obtenus sur des tâches de classification/régression sont au moins compétitifs avec l'état de l'art, voire meilleurs, en particulier sur des jeux de données restreints, attestant des possibilités d'apprentissage par transfert sur ce domaine
In the field of chemistry, it is interesting to be able to estimate the physicochemical properties of molecules, especially for industrial applications. These are difficult to estimate by physical simulations, as their implementation often present prohibitive time complexity. However, the emergence of data (public or private) opens new perspectives for the treatment of these problems by statistical methods and machine learning. The main difficulty lies in the characterization of molecules: these are more like a network of atoms (in other words a colored graph) than a vector. Unfortunately, statistical modeling methods usually deal with observations encoded as such, hence the need for specific methods able to deal with graphs- encoded observations, called structure-activity relationships. The aim of this thesis is to take advantage of public corpora to learn the best possible representations of these structures, and to transfer this global knowledge to smaller datasets. We adapted methods used in automatic processing of natural languages to achieve this goal. To implement them, more theoretical work was needed, especially on the graph isomorphism problem. The results obtained on classification / regression tasks are at least competitive with the state of the art, and even sometimes better, in particular on restricted data sets, attesting some opportunities for transfer learning in this field
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Potter, John R. "Pseudo-triangulations on closed surfaces". Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-021408-102227/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Jenkins, Peter. "Partial graph design embeddings and related problems /". [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18945.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Gibert, Domingo Jaume. "Vector Space Embedding of Graphs via Statistics of Labelling Information". Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96240.

Texto completo
Resumen
El reconeixement de patrons és la tasca que pretén distingir objectes entre diferents classes. Quan aquesta tasca es vol solucionar de forma automàtica un pas crucial és el com representar formalment els patrons a l'ordinador. En funció d'aquests formalismes, podem distingir entre el reconeixement estadístic i l'estructural. El primer descriu objectes com un conjunt de mesures col·locats en forma del que s'anomena un vector de característiques. El segon assumeix que hi ha relacions entre parts dels objectes que han de quedar explícitament representades i per tant fa servir estructures relacionals com els grafs per codificar la seva informació inherent. Els espais vectorials són una estructura matemàtica molt flexible que ha permès definir diverses maneres eficients d'analitzar patrons sota la forma de vectors de característiques. De totes maneres, la representació vectorial no és capaç d'expressar explícitament relacions binàries entre parts dels objectes i està restrigida a mesurar sempre, independentment de la complexitat dels patrons, el mateix nombre de característiques per cadascun d'ells. Les representacions en forma de graf presenten la situació contrària. Poden adaptar-se fàcilment a la complexitat inherent dels patrons però introdueixen un problema d'alta complexitat computational, dificultant el disseny d'eines eficients per al procés i l'anàlisis de patrons. Resoldre aquesta paradoxa és el principal objectiu d'aquesta tesi. La situació ideal per resoldre problemes de reconeixement de patrons seria el representar-los fent servir estructures relacionals com els grafs, i a l'hora, poder fer ús del ric repositori d'eines pel processament de dades del reconeixement estadístic. Una solució elegant a aquest problema és la de transformar el domini dels grafs en el domini dels vectors, on podem aplicar qualsevol algorisme de processament de dades. En altres paraules, assignant a cada graf un punt en un espai vectorial, automàticament tenim accés al conjunt d'algorismes del món estadístic per aplicar-los al domini dels grafs. Aquesta metodologia s'anomena graph embedding. En aquesta tesi proposem de fer una associació de grafs a vectors de característiques de forma simple i eficient fixant l'atenció en la informació d'etiquetatge dels grafs. En particular, comptem les freqüències de les etiquetes dels nodes així com de les aretes entre etiquetes determinades. Tot i la seva localitat, aquestes característiques donen una representació prou robusta de les propietats globals dels grafs. Primer tractem el cas de grafs amb etiquetes discretes, on les característiques són sencilles de calcular. El cas continu és abordat com una generalització del cas discret, on enlloc de comptar freqüències d'etiquetes, ho fem de representants d'aquestes. Ens trobem que les representacions vectorials que proposem pateixen d'alta dimensionalitat i correlació entre components, i tractem aquests problems mitjançant algorismes de selecció de característiques. També estudiem com la diversitat de diferents representacions pot ser explotada per tal de millorar el rendiment de classificadors base en el marc d'un sistema de múltiples classificadors. Finalment, amb una extensa evaluació experimental mostrem com la metodologia proposada pot ser calculada de forma eficient i com aquesta pot competir amb altres metodologies per a la comparació de grafs.
Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyze patterns. Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding. In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zha, Xiaoya. "Closed 2-cell embedding of 2-connected graphs in surfaces /". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844485895299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Simonovsky, Martin. "Deep learning on attributed graphs". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1133/document.

Texto completo
Resumen
Le graphe est un concept puissant pour la représentation des relations entre des paires d'entités. Les données ayant une structure de graphes sous-jacente peuvent être trouvées dans de nombreuses disciplines, décrivant des composés chimiques, des surfaces des modèles tridimensionnels, des interactions sociales ou des bases de connaissance, pour n'en nommer que quelques-unes. L'apprentissage profond (DL) a accompli des avancées significatives dans une variété de tâches d'apprentissage automatique au cours des dernières années, particulièrement lorsque les données sont structurées sur une grille, comme dans la compréhension du texte, de la parole ou des images. Cependant, étonnamment peu de choses ont été faites pour explorer l'applicabilité de DL directement sur des données structurées sous forme des graphes. L'objectif de cette thèse est d'étudier des architectures de DL sur des graphes et de rechercher comment transférer, adapter ou généraliser à ce domaine des concepts qui fonctionnent bien sur des données séquentielles et des images. Nous nous concentrons sur deux primitives importantes : le plongement de graphes ou leurs nœuds dans une représentation de l'espace vectorielle continue (codage) et, inversement, la génération des graphes à partir de ces vecteurs (décodage). Nous faisons les contributions suivantes. Tout d'abord, nous introduisons Edge-Conditioned Convolutions (ECC), une opération de type convolution sur les graphes réalisés dans le domaine spatial où les filtres sont générés dynamiquement en fonction des attributs des arêtes. La méthode est utilisée pour coder des graphes avec une structure arbitraire et variable. Deuxièmement, nous proposons SuperPoint Graph, une représentation intermédiaire de nuages de points avec de riches attributs des arêtes codant la relation contextuelle entre des parties des objets. Sur la base de cette représentation, l'ECC est utilisé pour segmenter les nuages de points à grande échelle sans sacrifier les détails les plus fins. Troisièmement, nous présentons GraphVAE, un générateur de graphes permettant de décoder des graphes avec un nombre de nœuds variable mais limité en haut, en utilisant la correspondance approximative des graphes pour aligner les prédictions d'un auto-encodeur avec ses entrées. La méthode est appliquée à génération de molécules
Graph is a powerful concept for representation of relations between pairs of entities. Data with underlying graph structure can be found across many disciplines, describing chemical compounds, surfaces of three-dimensional models, social interactions, or knowledge bases, to name only a few. There is a natural desire for understanding such data better. Deep learning (DL) has achieved significant breakthroughs in a variety of machine learning tasks in recent years, especially where data is structured on a grid, such as in text, speech, or image understanding. However, surprisingly little has been done to explore the applicability of DL on graph-structured data directly.The goal of this thesis is to investigate architectures for DL on graphs and study how to transfer, adapt or generalize concepts working well on sequential and image data to this domain. We concentrate on two important primitives: embedding graphs or their nodes into a continuous vector space representation (encoding) and, conversely, generating graphs from such vectors back (decoding). To that end, we make the following contributions.First, we introduce Edge-Conditioned Convolutions (ECC), a convolution-like operation on graphs performed in the spatial domain where filters are dynamically generated based on edge attributes. The method is used to encode graphs with arbitrary and varying structure.Second, we propose SuperPoint Graph, an intermediate point cloud representation with rich edge attributes encoding the contextual relationship between object parts. Based on this representation, ECC is employed to segment large-scale point clouds without major sacrifice in fine details.Third, we present GraphVAE, a graph generator allowing to decode graphs with variable but upper-bounded number of nodes making use of approximate graph matching for aligning the predictions of an autoencoder with its inputs. The method is applied to the task of molecule generation
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Fowler, Joe. "Unlabled Level Planarity". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195812.

Texto completo
Resumen
Consider a graph G with vertex set V in which each of the n vertices is assigned a number from the set {1, ..., k} for some positive integer k. This assignment phi is a labeling if all k numbers are used. If phi does not assign adjacent vertices the same label, then phi partitions V into k levels. In a level drawing, the y-coordinate of each vertex matches its label and the edges are drawn strictly y-monotone. This leads to level drawings in the xy-plane where all vertices with label j lie along the line lj = {(x, j) : x in Reals} and where each edge crosses any of the k horizontal lines lj for j in [1..k] at most once. A graph with such a labeling forms a level graph and is level planar if it has a level drawing without crossings.We first consider the class of level trees that are level planar regardless of their labeling. We call such trees unlabeled level planar (ULP). We describe which trees are ULP and provide linear-time level planar drawing algorithms for any labeling. We characterize ULP trees in terms of two forbidden subdivisions so that any other tree must contain a subtree homeomorphic to one of these. We also provide linear-time recognition algorithms for ULP trees. We then extend this characterization to all ULP graphs with five additional forbidden subdivisions, and provide linear-time recogntion and drawing algorithms for any given labeling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ebsen, Oliver-Andre [Verfasser]. "Homomorphism thresholds and embeddings of spanning subgraphs in dense graphs / Oliver-Andre Ebsen". Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1241249172/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Cassagnes, Cyril. "Architecture autonome et distribuée d’adressage et de routage pour la flexibilité des communications dans l’internet". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14600/document.

Texto completo
Resumen
Les schémas de routage locaux basés sur des coordonnées prises dans le plan hyperbolique ont attiré un intérêt croissant depuis quelques années. Cependant, les solutions proposées sont toutes appliquées à des réseaux au topologie aléatoire et au nombre de nœuds limités. Dans le même temps, plusieurs travaux se sont concentrés sur la création de modèle topologique basé sur les lois de la géométrie hyperbolique. Dans ce cas, Il est montré que les graphes ont des topologies semblables à Internet et qu'un routage local hyperbolique atteint une efficacité proche de la perfection. Cependant, ces graphes ne garantissent pas le taux de réussite du routage même si aucune panne ne se produit. Dans cette thèse, l'objectif est de construire un système passant à l'échelle pour la création de réseau recouvrant capable de fournir à ses membres un service d'adressage et de routage résilient dans un environnement dynamique. Ensuite, nous étudions de quelle manière les réseaux P2PTV pourraient supporter un nombre d'utilisateur croissant. Dans cette thèse, nous essayons de répondre à cette question en étudiant les facteurs d'efficacité et de passage à l'échelle dans un système de diffusion vidéo P2P typique. Au travers des données fournies par Zattoo, producteur de réseau P2PTV, nous réalisons des simulations dont les résultats montrent qu'il y a encore des obstacles à surmonter avant que les réseaux P2P de diffusion vidéo puissent dépendre uniquement de leurs utilisateurs
Local routing schemes based on virtual coordinates taken from the hyperbolic plane have attracted considerable interest in recent years.However, solutions have been applied to ad-hoc and sensor networks having a random topology and a limited number of nodes. In other hand, some research has focused on the creation of network topology models based on hyperbolic geometric laws. In this case, it has been shown that these graphs have an Internet-like topology and that local hyperbolic routing achieves a near perfect efficiency. However, with these graphs, routing success is not guaranteed even if no failures happen. In this thesis, we aim at building a scalable system for creating overlay networks on top of the Internet that would provide reliable addressing and routing service to its members in a dynamic environment.Next, we investigate how well P2PTV networks would support a growing number of users. In this thesis, we try to address this question by studying scalability and efficiency factors in a typical P2P based live streaming network. Through the use of the data provided by Zattoo a production P2PTV network, we carry out simulations whose results show that there are still hurdles to overcome before P2P based live streaming could depend uniquely of their users
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Whalen, Peter. "Pfaffian orientations, flat embeddings, and Steinberg's conjecture". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52207.

Texto completo
Resumen
The first result of this thesis is a partial result in the direction of Steinberg's Conjecture. Steinberg's Conjecture states that any planar graph without cycles of length four or five is three colorable. Borodin, Glebov, Montassier, and Raspaud showed that planar graphs without cycles of length four, five, or seven are three colorable and Borodin and Glebov showed that planar graphs without five cycles or triangles at distance at most two apart are three colorable. We prove a statement that implies the first of these theorems and is incomparable with the second: that any planar graph with no cycles of length four through six or cycles of length seven with incident triangles distance exactly two apart are three colorable. The third and fourth chapters of this thesis are concerned with the study of Pfaffian orientations. A theorem proved by William McCuaig and, independently, Neil Robertson, Paul Seymour, and Robin Thomas provides a good characterization for whether or not a bipartite graph has a Pfaffian orientation as well as a polynomial time algorithm for that problem. We reprove this characterization and provide a new algorithm for this problem. In Chapter 3, we generalize a preliminary result needed to reprove this theorem. Specifically, we show that any internally 4-connected, non-planar bipartite graph contains a subdivision of K3,3 in which each path has odd length. In Chapter 4, we make use of this result to provide a much shorter proof using elementary methods of this characterization. In the fourth and fifth chapters we investigate flat embeddings. A piecewise-linear embedding of a graph in 3-space is flat if every cycle of the graph bounds a disk disjoint from the rest of the graph. We provide a structural theorem for flat embeddings that indicates how to build them from small pieces in Chapter 5. In Chapter 6, we present a class of flat graphs that are highly non-planar in the sense that, for any fixed k, there are an infinite number of members of the class such that deleting k vertices leaves the graph non-planar.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

PALUMBO, ENRICO. "Knowledge Graph Embeddings for Recommender Systems". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850588.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Islam, Md Kamrul. "Explainable link prediction in large complex graphs - application to drug repurposing". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0203.

Texto completo
Resumen
De nombreux systèmes complexes du monde réel peuvent être représentés par des graphes, où les nœuds représentent des entités et les liens des relations entre les paires de nœuds. La prédiction de liens (LP) est l'un des problèmes les plus intéressants et les plus anciens dans le domaine de l'exploration de graphes ; elle prédit la probabilité d'un lien entre deux nœuds non connectés. Cette thèse étudie le problème LP dans les graphes simples et les graphes de connaissances (KGs). La première partie de cette thèse se concentre sur le problème LP dans les graphes simples. Dans la première étude, des approches basées sur la similarité et sur l'encastrement sont évaluées et comparées sur des graphes simples de différents domaines. L'étude a également identifié la difficulté de fixer le seuil du score de similarité pour calculer la métrique de précision des approches basées sur la similarité et a proposé une nouvelle méthode pour calculer la métrique. Les résultats ont montré la supériorité attendue des approches basées sur l'intégration. Cependant, chaque approche basée sur la similarité s'est avérée compétitive sur des graphes aux propriétés spécifiques. Nous avons pu vérifier expérimentalement que les approches basées sur la similarité sont explicables mais manquent de généralisation, tandis que les approches basées sur l'encastrement sont générales mais non explicables. La deuxième étude tente de surmonter la limitation de l'inexplicabilité des approches basées sur l'encastrement en découvrant des connexions intéressantes entre elles et les approches basées sur la similarité. La troisième étude démontre comment les approches basées sur la similarité peuvent être assemblées pour concevoir une approche LP supervisée explicable. Il est intéressant de noter que l'étude montre des performances LP élevées pour l'approche supervisée sur différents graphes, ce qui est très satisfaisant. La deuxième partie de la thèse se concentre sur les LP dans les KGs. Un KG est représenté comme une collection de triplets RDF, (head,relation,tail) où les entités head et tail sont reliées par une relation spécifique. Le problème de LP dans un KG est formulé comme la prédiction de la tête ou de la queue manquante dans un triplet. La LP basée sur l'incorporation de KG est devenue très populaire ces dernières années, et la génération de triplets négatifs est une tâche importante dans les méthodes d'incorporation. La quatrième étude traite d'une nouvelle méthode appelée SNS pour générer des triplets négatifs de haute qualité. Nos résultats montrent une meilleure performance LP lorsque SNS est utilisé que lorsque d'autres méthodes d'échantillonnage négatif sont utilisées. La deuxième étude traite d'une nouvelle méthode d'extraction de règles neuro-symboliques et d'une stratégie d'abduction pour expliquer les LP par une approche basée sur l'intégration en utilisant les règles apprises. La troisième étude applique notre LP explicable pour développer une nouvelle approche de repositionnement des médicaments pour COVID-19. L'approche apprend un ensemble d'enchâssements d'entités et de relations dans un KG centré sur COVID-19 pour obtenir un meilleur enchâssement des éléments du graphe. Pour la première fois à notre connaissance, des méthodes de criblage virtuel sont ensuite utilisées pour évaluer les prédictions obtenues à l'aide des embeddings. L'évaluation moléculaire et les chemins explicatifs apportent de la fiabilité aux résultats de prédiction et sont de nouvelles méthodes complémentaires et réutilisables pour mieux évaluer les molécules proposées pour le repositionnement. La dernière étude propose une architecture distribuée pour l'apprentissage des KG embeddings dans des environnements distribués et parallèles. Les résultats révèlent que l'apprentissage dans l'environnement distribué proposé, par rapport à un apprentissage centralisé, réduit considérablement le temps de calcul des méthodes d'incorporation KG sans affecter les performances des LP
Many real-world complex systems can be well-represented with graphs, where nodes represent objects or entities and links/relations represent interactions between pairs of nodes. Link prediction (LP) is one of the most interesting and long-standing problems in the field of graph mining; it predicts the probability of a link between two unconnected nodes based on available information in the current graph. This thesis studies the LP problem in graphs. It consists of two parts: LP in simple graphs and LP knowledge graphs (KGs). In the first part, the LP problem is defined as predicting the probability of a link between a pair of nodes in a simple graph. In the first study, a few similarity-based and embedding-based LP approaches are evaluated and compared on simple graphs from various domains. he study also criticizes the traditional way of computing the precision metric of similarity-based approaches as the computation faces the difficulty of tuning the threshold for deciding the link existence based on the similarity score. We proposed a new way of computing the precision metric. The results showed the expected superiority of embedding-based approaches. Still, each of the similarity-based approaches is competitive on graphs with specific properties. We could check experimentally that similarity-based approaches are fully explainable but lack generalization due to their heuristic nature, whereas embedding-based approaches are general but not explainable. The second study tries to alleviate the unexplainability limitation of embedding-based approaches by uncovering interesting connections between them and similarity-based approaches to get an idea of what is learned in embedding-based approaches. The third study demonstrates how the similarity-based approaches can be ensembled to design an explainable supervised LP approach. Interestingly, the study shows high LP performance for the supervised approach across various graphs, which is competitive with embedding-based approaches.The second part of the thesis focuses on LP in KGs. A KG is represented as a collection of RDF triples, (head,relation,tail) where the head and the tail are two entities which are connected by a specific relation. The LP problem in a KG is formulated as predicting missing head or tail entities in a triple. LP approaches based on the embeddings of entities and relations of a KG have become very popular in recent years, and generating negative triples is an important task in KG embedding methods. The first study in this part discusses a new method called SNS to generate high-quality negative triples during the training of embedding methods for learning embeddings of KGs. The results we produced show better LP performance when SNS is injected into an embedding approach than when injecting state-of-the-art negative triple sampling methods. The second study in the second part discusses a new neuro-symbolic method of mining rules and an abduction strategy to explain LP by an embedding-based approach utilizing the learned rules. The third study applies the explainable LP to a COVID-19 KG to develop a new drug repurposing approach for COVID-19. The approach learns ”ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. Molecular evaluation and explanatory paths bring reliability to prediction results and constitute new complementary and reusable methods for assessing KG-based drug repurposing. The last study proposes a distributed architecture for learning KG embeddings in distributed and parallel settings. The results of the study that the computational time of embedding methods improves remarkably without affecting LP performance when they are trained in the proposed distributed settings than the traditional centralized settings
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Thanh, Trung Huynh. "On leverage embedding techniques for network alignment". Thesis, Griffith University, 2022. http://hdl.handle.net/10072/416055.

Texto completo
Resumen
Networks are natural but powerful structures that capture relationships between different entities in many domains, such as social networks, citation networks, bioinformatic networks. In many applications that require multiple networks analysis, network alignment, the task of recognizing node correspondence across different networks, plays an important role. A wellknown application of network alignment is to identify which accounts in different social networks belong to the same person. Given the appeal of network alignment, there is a rich body of researches that aims to tackle this problem. However, many research challenges still exist, such as enhancing the accuracy and improving the scalability due to the information explosion. With such motivation, in scope of our PhD work, we address the three crucial challenges in network alignment literature, namely (i) enhancing scalability of network alignment on large-scale graphs, (ii) enhancing the robustness of network alignment to adversarial conditions and (iii) multi-modal information integration for network aligners. To do so, we focus on proposing aligner frameworks for different types of input attributed networks from simple to complex. Each framework attempts to answer simultaneously all three research questions by leveraging embedding techniques, where the input networks are embedded into insightful, low-dimensional vector spaces. This helps to enrich the nodes’ individual context with multi-modal information, thus facilitates the distinction between nodes. The learnt embeddings also enables faster alignment retrieval by direct vector comparison. Our proposed techniques improve upon the state-of-the-art for different types of attributed networks and cover a large range of applications.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Institute of Integrated and Intelligent Systems
Science, Environment, Engineering and Technology
Full Text
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

GARBARINO, DAVIDE. "Acknowledging the structured nature of real-world data with graphs embeddings and probabilistic inference methods". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1092453.

Texto completo
Resumen
In the artificial intelligence community there is a growing consensus that real world data is naturally represented as graphs because they can easily incorporate complexity at several levels, e.g. hierarchies or time dependencies. In this context, this thesis studies two main branches for structured data. In the first part we explore how state-of-the-art machine learning methods can be extended to graph modeled data provided that one is able to represent graphs in vector spaces. Such extensions can be applied to analyze several kinds of real-world data and tackle different problems. Here we study the following problems: a) understand the relational nature and evolution of websites which belong to different categories (e-commerce, academic (p.a.) and encyclopedic (forum)); b) model tennis players scores based on different game surfaces and tournaments in order to predict matches results; c) analyze preter- m-infants motion patterns able to characterize possible neuro degenerative disorders and d) build an academic collaboration recommender system able to model academic groups and individual research interest while suggesting possible researchers to connect with, topics of interest and representative publications to external users. In the second part we focus on graphs inference methods from data which present two main challenges: missing data and non-stationary time dependency. In particular, we study the problem of inferring Gaussian Graphical Models in the following settings: a) inference of Gaussian Graphical Models when data are missing or latent in the context of multiclass or temporal network inference and b) inference of time-varying Gaussian Graphical Models when data is multivariate and non-stationary. Such methods have a natural application in the composition of an optimized stock markets portfolio. Overall this work sheds light on how to acknowledge the intrinsic structure of data with the aim of building statistical models that are able to capture the actual complexity of the real world.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wåhlin, Lova. "Towards Machine Learning Enabled Automatic Design of IT-Network Architectures". Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249213.

Texto completo
Resumen
There are many machine learning techniques that cannot be performed on graph-data. Techniques such as graph embedding, i.e mapping a graph to a vector, can open up a variety of machine learning solutions. This thesis addresses to what extent static graph embedding techniques can capture important characteristics of an IT-architecture graph, with the purpose of embedding the graphs in a common euclidean vector space that can serve as the state space in a reinforcement learning setup. The metric used for evaluating the performance of the embedding is the security of the graph, i.e the time it would take for an unauthorized attacker to penetrate the IT-architecture graph. The algorithms evaluated in this work are the node embedding methods node2vec and gat2vec and the graph embedding method graph2vec. The predictive results of the embeddings are compared with two baseline methods. The results of each of the algorithms mostly display a significant predictive performance improvement compared to the baseline, where the F1 score in some cases is doubled. Indeed, the results indicate that static graph embedding methods can in fact capture some information about the security of an IT-architecture. However, no conclusion can be made whether a static graph embedding is actually the best contender for posing as the state space in a reinforcement learning framework. To make a certain conclusion other options has to be researched, such as dynamic graph embedding methods.
Det är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gusmão, Arthur Colombini. "Interpreting embedding models of knowledge bases". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-04022019-094854/.

Texto completo
Resumen
Knowledge bases are employed in a variety of applications, from natural language processing to semantic web search; alas, in practice, their usefulness is hurt by their incompleteness. To address this issue, several techniques aim at performing knowledge base completion, of which embedding models are efficient, attain state-of-the-art accuracy, and eliminate the need for feature engineering. However, embedding models predictions are notoriously hard to interpret. In this work, we propose model-agnostic methods that allow one to interpret embedding models by extracting weighted Horn rules from them. More specifically, we show how the so-called \"pedagogical techniques\", from the literature on neural networks, can be adapted to take into account the large-scale relational aspects of knowledge bases, and show experimentally their strengths and weaknesses.
Bases de conhecimento apresentam diversas aplicações, desde processamento de linguagem natural a pesquisa semântica da web; contudo, na prática, sua utilidade é prejudicada por não serem totalmente completas. Para solucionar esse problema, diversas técnicas focam em completar bases de conhecimento, das quais modelos de embedding são eficientes, atingem estado da arte em acurácia, e eliminam a necessidade de fazer-se engenharia de características dos dados de entrada. Entretanto, as predições dos modelos de embedding são notoriamente difíceis de serem interpretadas. Neste trabalho, propomos métodos agnósticos a modelo que permitem interpretar modelos de embedding através da extração de regras Horn ponderadas por pesos dos mesmos. Mais espeficicamente, mostramos como os chamados \"métodos pedagógicos\", da literatura de redes neurais, podem ser adaptados para lidar com os aspectos relacionais e de larga escala de bases de conhecimento, e mostramos experimentalmente seus pontos fortes e fracos.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Yandrapally, Aruna Harini. "Combining Node Embeddings From Multiple Contexts Using Multi Dimensional Scaling". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627658906149105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Helmberg, Christoph, Israel Rocha y Uwe Schwerdtfeger. "A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite Graphs". Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175057.

Texto completo
Resumen
We give a strongly polynomial time combinatorial algorithm to minimise the largest eigenvalue of the weighted Laplacian of a bipartite graph. This is accomplished by solving the dual graph embedding problem which arises from a semidefinite programming formulation. In particular, the problem for trees can be solved in time cubic in the number of vertices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chen, Xiaofeng. "Plane Permutations and their Applications to Graph Embeddings and Genome Rearrangements". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77535.

Texto completo
Resumen
Maps have been extensively studied and are important in many research fields. A map is a 2-cell embedding of a graph on an orientable surface. Motivated by a new way to read the information provided by the skeleton of a map, we introduce new objects called plane permutations. Plane permutations not only provide new insight into enumeration of maps and related graph embedding problems, but they also provide a powerful framework to study less related genome rearrangement problems. As results, we refine and extend several existing results on enumeration of maps by counting plane permutations filtered by different criteria. In the spirit of the topological, graph theoretical study of graph embeddings, we study the behavior of graph embeddings under local changes. We obtain a local version of the interpolation theorem, local genus distribution as well as an easy-to-check necessary condition for a given embedding to be of minimum genus. Applying the plane permutation paradigm to genome rearrangement problems, we present a unified simple framework to study transposition distances and block-interchange distances of permutations as well as reversal distances of signed permutations. The essential idea is associating a plane permutation to a given permutation or signed permutation to sort, and then applying the developed plane permutation theory.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

MONDAL, DEBAJYOTI. "Embedding a Planar Graph on a Given Point Set". Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.

Texto completo
Resumen
A point-set embedding of a planar graph G with n vertices on a set S of n points is a planar straight-line drawing of G, where each vertex of G is mapped to a distinct point of S. We prove that the point-set embeddability problem is NP-complete for 3-connected planar graphs, answering a question of Cabello [20]. We give an O(nlog^3n)-time algorithm for testing point-set embeddability of plane 3-trees, improving the algorithm of Moosa and Rahman [60]. We prove that no set of 24 points can support all planar 3-trees with 24 vertices, partially answering a question of Kobourov [55]. We compute 2-bend point-set embeddings of plane 3-trees in O(W^2) area, where W is the length of longest edge of the bounding box of S. Finally, we design algorithms for testing convex point-set embeddability of klee graphs and arbitrary planar graphs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Wiradee, Imrattanatrai. "Supporting Entity-oriented Search with Fine-grained Information in Knowledge Graphs". Kyoto University, 2020. http://hdl.handle.net/2433/259074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Dube, Matthew P. "An Embedding Graph for 9-Intersection Topological Spatial Relations". Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/DubeMP2009.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Boyer, John M. "Simplified O(n) algorithms for planar graph embedding, Kuratowski subgraph isolation, and related problems". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ62507.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Candel, Gaëlle. "Connecting graphs to machine learning". Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLE018.

Texto completo
Resumen
L’objet de cette thèse est de proposer des approches nouvelles permettant l’utilisation d’algorithmes d’apprentissage automatique travaillant usuellement des données tabulaires aux graphes. Un graphe est une structure de donnée composée de nœuds reliés entre eux par des liens. Cette structure peut être représentée sous la forme d’une matrice, où chaque connexion entre de nœuds est représentée par une valeur non nulle, permettant une manipulation des données plus facile. Néanmoins, par leurs différences structurelles, la transposition d’un algorithme exploitant des données tabulaires aux graphes ne donne pas les résultats escomptés. Deux caractéristiques rendent cette adaptation difficile : la faible connectivité des nœuds ainsi que la distribution en loi de puissance du degré des nœuds. Ces caractéristiques conduisent toutes les deux à des matrices creuses pauvres en information tout en nécessitant beaucoup de mémoire de stockage. Dans ces travaux, nous proposons plusieurs manières de prendre en compte ces différences pour deux types de graphes particuliers. Dans la première partie, nous nous intéressons aux graphes de citations et à leur représentation dans l’optique de la veille technologique, tandis que la seconde partie s’adresse aux graphes bipartites utilisés principalement par les systèmes de recommandation. Ces adaptations permettent la réalisation de taches usuelles en apprentissage automatique, telle que le partitionnement et la visualisation des données. Pour le cas des graphes bipartites, des algorithmes spécifiques de co-partitionnement sont proposés pour la segmentation conjointe des deux parties. La troisième partie prend un revers différent. La méthode développée exploite le graphe des k plus proches voisins construit à partir des données tabulaires afin de corriger des erreurs de classifications. Les différentes méthodes développées utilisent diverses approches pour emmagasiner plus d’information dans un vecteur par rapport à l’encodage binaire habituel, permettant de travailler les graphes avec des algorithmes usuel d’apprentissage automatique
This thesis proposes new approaches to process graph using machine learning algorithms designed for tabular data. A graph is a data structure made of nodes linked to each others by edges. This structure can be represented under a matrix form where the connection between two nodes is represented by a non-zero value, simplifying the manipulation of the data. Nonetheless, the transposition of an algorithm adapted to tabular data to graphs would not give the expected results because of the structural differences. Two characteristics make the transposition difficult: the low nodes’ connectivity and the power-law distribution of nodes’ degree. These two characteristics both lead to sparse matrices with low information content while requiring a large memory. In this work, we propose several methods that consider these two graph’s specificities. In the first part, we focus on citation graphs which belong to the directed acyclic graph category and can be exploited for technical watch, while the second part is dedicated to bipartite graphs mainly use by recommender systems. These adaptations permit the achievement of usual machine learning tasks, such as clustering and data visualization. Specific co-clustering algorithms were designed to segment jointly each side of a bipartite graph and identify groups of similar nodes. The third part approaches graphs from a different perspective. The developed approach exploits the k nearest neighbours graph built from the tabular data to help correcting classification errors. These different methods use diverse methods to embed more information in a vector compared to the usual binary encoding, allowing to process graphs with usual machine learning algorithm
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ahmed, Algabli Shaima. "Learning the Graph Edit Distance through embedding the graph matching". Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669612.

Texto completo
Resumen
Els gràfics són estructures de dades abstractes que s’utilitzen per modelar problemes reals amb dues entitats bàsiques: nodes i vores. Cada node o vèrtex representa un punt d'interès rellevant d'un problema i cada vora representa la relació entre aquests punts. Es poden atribuir nodes i vores per augmentar la precisió del model, cosa que significa que aquests atributs podrien variar des de vectors de característiques fins a etiquetes de descripció. A causa d'aquesta versatilitat, s'han trobat moltes aplicacions en camps com la visió per ordinador, la biomèdica i l'anàlisi de xarxa, etc., la primera part d'aquesta tesi presenta un mètode general per aprendre automàticament els costos d'edició que comporta l'edició de gràfics. Distància. El mètode es basa en incrustar parells de gràfics i el seu mapeig de node a node de veritat terrestre en un espai euclidià. D’aquesta manera, l’algoritme d’aprenentatge no necessita calcular cap concordança de gràfics tolerant als errors, que és l’inconvenient principal d’altres mètodes a causa de la seva intrínseca complexitat computacional exponencial. No obstant això, el mètode d’aprenentatge té la principal restricció que els costos d’edició han de ser constants. A continuació, posem a prova aquest mètode amb diverses bases de dades gràfiques i també l’aplicem per realitzar el registre d’imatges. A la segona part de la tesi, aquest mètode es particularitza a la verificació d’empremtes dactilars. Les dues diferències principals respecte a l’altre mètode són que només definim els costos d’edició de substitució als nodes. Per tant, suposem que els gràfics no tenen arestes. I també, el mètode d’aprenentatge no es basa en una classificació lineal sinó en una regressió lineal.
Los gráficos son estructuras de datos abstractas que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada borde representa la relación entre estos puntos. Se podrían atribuir nodos y bordes para aumentar la precisión del modelo, lo que significa que estos atributos podrían variar de vectores de características a etiquetas de descripción. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como visión por computadora, biomédicos y análisis de redes, etc. La primera parte de esta tesis presenta un método general para aprender automáticamente los costos de edición involucrados en la Edición de Gráficos Distancia. El método se basa en incrustar pares de gráficos y su mapeo de nodo a nodo de verdad fundamental en un espacio euclidiano. De esta manera, el algoritmo de aprendizaje no necesita calcular ninguna coincidencia de gráfico tolerante a errores, que es el principal inconveniente de otros métodos debido a su complejidad computacional exponencial intrínseca. Sin embargo, el método de aprendizaje tiene la principal restricción de que los costos de edición deben ser constantes. Luego probamos este método con varias bases de datos de gráficos y también lo aplicamos para realizar el registro de imágenes. En la segunda parte de la tesis, este método se especializa en la verificación de huellas digitales. Las dos diferencias principales con respecto al otro método son que solo definimos los costos de edición de sustitución en los nodos. Por lo tanto, suponemos que los gráficos no tienen aristas. Y también, el método de aprendizaje no se basa en una clasificación lineal sino en una regresión lineal.
Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the model, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, biomedics, and network analysis, and so on .The first part of this thesis presents a general method to automatically learn the edit costs involved in the Graph Edit Distance. The method is based on embedding pairs of graphs and their ground-truth node-tonode mapping into a Euclidean space. In this way, the learning algorithm does not need to compute any Error-Tolerant Graph Matching, which is the main drawback of other methods due to its intrinsic exponential computational complexity. Nevertheless, the learning method has the main restriction that edit costs have to be constant. Then we test this method with several graph databases and also we apply it to perform image registration. In the second part of the thesis, this method is particularized to fingerprint verification. The two main differences with respect to the other method are that we only define the substitution edit costs on the nodes. Thus, we assume graphs do not have edges. And also, the learning method is not based on a linear classification but on a linear regression.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Jagtap, Surabhi. "Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST014.

Texto completo
Resumen
Les systèmes biologiques sont composés de biomolécules en interaction à différents niveaux moléculaires. D’un côté, les avancées technologiques ont facilité l’obtention des données omiques à ces divers niveaux. De l’autre, de nombreuses questions se posent, pour donner du sens et élucider les interactions importantes dans le flux d’informations complexes porté par cette énorme variété et quantité des données multi-omiques. Les réponses les plus satisfaisantes seront celles qui permettront de dévoiler les mécanismes sous-jacents à la condition biologique d’intérêt. On s’attend souvent à ce que l’intégration de différents types de données omiques permette de mettre en lumière les changements causaux potentiels qui conduisent à un phénotype spécifique ou à des traitements ciblés. Avec les avancées récentes de la science des réseaux, nous avons choisi de traiter ce problème d’intégration en représentant les données omiques à travers les graphes. Dans cette thèse, nous avons développé trois modèles à savoir BraneExp, BraneNet et BraneMF pour l’apprentissage d’intégrations de noeuds à partir de réseaux biologiques multicouches générés à partir de données omiques. Notre objectif est de résoudre divers problèmes complexes liés à l’intégration de données multiomiques, en développant des méthodes expressives et évolutives capables de tirer parti de la riche sémantique structurelle latente des réseaux du monde réel
Biological systems are composed of interacting bio-molecules at different molecular levels. With the advent of high-throughput technologies, omics data at their respective molecular level can be easily obtained. These huge, complex multi-omics data can be useful to provide insights into the flow of information at multiple levels, unraveling the mechanisms underlying the biological condition of interest. Integration of different omics data types is often expected to elucidate potential causative changes that lead to specific phenotypes, or targeted treatments. With the recent advances in network science, we choose to handle this integration issue by representing omics data through networks. In this thesis, we have developed three models, namely BraneExp, BraneNet, and BraneMF, for learning node embeddings from multilayer biological networks generated with omics data. We aim to tackle various challenging problems arising in multi-omics data integration, developing expressive and scalable methods capable of leveraging rich structural semantics of realworld networks
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía