Artículos de revistas sobre el tema "Graphene p-n junction"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Graphene p-n junction.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Graphene p-n junction".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Fan, Yan, Tao Wang, Yinwei Qiu, Yinli Yang, Qiubo Pan, Jun Zheng, Songwei Zeng, Wei Liu, Gang Lou y Liang Chen. "Pure Graphene Oxide Vertical p–n Junction with Remarkable Rectification Effect". Molecules 26, n.º 22 (13 de noviembre de 2021): 6849. http://dx.doi.org/10.3390/molecules26226849.

Texto completo
Resumen
Graphene p-n junctions have important applications in the fields of optical interconnection and low–power integrated circuits. Most current research is based on the lateral p-n junction prepared by chemical doping and other methods. Here, we report a new type of pure graphene oxide (pGO) vertical p-n junctions which do not dope any other elements but only controls the oxygen content of GO. The I–V curve of the pGO vertical p–n junction demonstrates a remarkable rectification effect. In addition, the pGO vertical p–n junction shows stability of its rectification characteristic over long-term storage for six months when sealed and stored in a PE bag. Moreover, the pGO vertical p–n junctions have obvious photoelectric response and various rectification effects with different thicknesses and an oxygen content of GO, humidity, and temperature. Hall effect test results show that rGO is an n–type semiconductor; theoretical calculations and research show that GO is generally a p–type semiconductor with a bandgap, thereby forming a p–n junction. Our work provides a method for preparing undoped GO vertical p–n junctions with advantages such as simplicity, convenience, and large–scale industrial preparation. Our work demonstrates great potential for application in electronics and highly sensitive sensors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Indykiewicz, K., C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev y A. Yurgens. "Current-induced enhancement of photo-response in graphene THz radiation detectors". AIP Advances 12, n.º 11 (1 de noviembre de 2022): 115009. http://dx.doi.org/10.1063/5.0117818.

Texto completo
Resumen
Thermoelectric readout in a graphene terahertz (THz) radiation detector requires a p- n junction across the graphene channel. Even without an intentional p- n junction, two latent junctions can exist in the vicinity of the electrodes/antennas through the proximity to the metal. In a symmetrical structure, these junctions are connected back-to-back and therefore counterbalance each other with regard to rectification of the ac signal. Because of the Peltier effect, a small dc current results in additional heating in one and cooling in another p- n junction, thereby breaking the symmetry. The p- n junctions then no longer cancel, resulting in a greatly enhanced rectified signal. This allows simplifying the design and controlling the sensitivity of THz radiation detectors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Low, Tony, Seokmin Hong, Joerg Appenzeller, Supriyo Datta y Mark S. Lundstrom. "Conductance Asymmetry of Graphene p-n Junction". IEEE Transactions on Electron Devices 56, n.º 6 (junio de 2009): 1292–99. http://dx.doi.org/10.1109/ted.2009.2017646.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Liang, Jierui, Ke Xu, Swati Arora, Jennifer E. Laaser y Susan K. Fullerton-Shirey. "Ion-Locking in Solid Polymer Electrolytes for Reconfigurable Gateless Lateral Graphene p-n Junctions". Materials 13, n.º 5 (1 de marzo de 2020): 1089. http://dx.doi.org/10.3390/ma13051089.

Texto completo
Resumen
A gateless lateral p-n junction with reconfigurability is demonstrated on graphene by ion-locking using solid polymer electrolytes. Ions in the electrolytes are used to configure electric-double-layers (EDLs) that induce p- and n-type regions in graphene. These EDLs are locked in place by two different electrolytes with distinct mechanisms: (1) a polyethylene oxide (PEO)-based electrolyte, PEO:CsClO4, is locked by thermal quenching (i.e., operating temperature < Tg (glass transition temperature)), and (2) a custom-synthesized, doubly-polymerizable ionic liquid (DPIL) is locked by thermally triggered polymerization that enables room temperature operation. Both approaches are gateless because only the source/drain terminals are required to create the junction, and both show two current minima in the backgated transfer measurements, which is a signature of a graphene p-n junction. The PEO:CsClO4 gated p-n junction is reconfigured to n-p by resetting the device at room temperature, reprogramming, and cooling to T < Tg. These results show an alternate approach to locking EDLs on 2D devices and suggest a path forward to reconfigurable, gateless lateral p-n junctions with potential applications in polymorphic logic circuits.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jung, Min Wook, Woo Seok Song, Sung Myung, Jong Sun Lim, Sun Sook Lee y Ki Seok An. "Formation of Graphene P-N Junction Arrays Using Soft-Lithographic Patterning and Cross-Stacking". Advanced Materials Research 1098 (abril de 2015): 63–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.63.

Texto completo
Resumen
Two key issues in graphene-based p-n junction applications are the manipulation of the type and density of carrier in graphene and the development of a facile fabrication process. Here we reported the formation of graphene films with tunable carrier type by doping of ethoxylated polyethylenimine (PEIE) and Au nanoparticles (NPs). The carrier density of doped graphene can be tuned by altering the concentration of the dopant solutions. The doping effects of PEIE and Au NPs on graphene were monitored by resonant Raman spectroscopy and electrical transport measurements. Graphene p-n junction arrays were assembled by simple soft-lithographic patterning and cross-stacking of n-and p-type doped graphene films, showing a graphene p-n junction behavior with two VCNDP.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Shu-Hui, Jia-Ji Zhu, Wen Yang y Kai Chang. "Focusing RKKY interaction by graphene P–N junction". 2D Materials 4, n.º 3 (27 de junio de 2017): 035005. http://dx.doi.org/10.1088/2053-1583/aa76d2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lv, Shu-Hui, Shu-Bo Feng y Yu-Xian Li. "Thermopower and conductance for a graphene p–n junction". Journal of Physics: Condensed Matter 24, n.º 14 (13 de marzo de 2012): 145801. http://dx.doi.org/10.1088/0953-8984/24/14/145801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yu, Tianhua, Changdong Kim, Chen-Wei Liang y Bin Yu. "Formation of Graphene p-n Junction via Complementary Doping". IEEE Electron Device Letters 32, n.º 8 (agosto de 2011): 1050–52. http://dx.doi.org/10.1109/led.2011.2158382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Peters, Eva C., Eduardo J. H. Lee, Marko Burghard y Klaus Kern. "Gate dependent photocurrents at a graphene p-n junction". Applied Physics Letters 97, n.º 19 (8 de noviembre de 2010): 193102. http://dx.doi.org/10.1063/1.3505926.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Hao, Shubin Su, Chenhui Liang, Ting Zhang, Xuhong An, Meizhen Huang, Haihua Tao et al. "UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode". ACS Applied Materials & Interfaces 11, n.º 46 (28 de octubre de 2019): 43351–58. http://dx.doi.org/10.1021/acsami.9b14461.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Kim, Jun Beom, Jinshu Li, Yongsuk Choi, Dongmok Whang, Euyheon Hwang y Jeong Ho Cho. "Photosensitive Graphene P–N Junction Transistors and Ternary Inverters". ACS Applied Materials & Interfaces 10, n.º 15 (19 de marzo de 2018): 12897–903. http://dx.doi.org/10.1021/acsami.8b00483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lemme, Max C., Frank H. L. Koppens, Abram L. Falk, Mark S. Rudner, Hongkun Park, Leonid S. Levitov y Charles M. Marcus. "Gate-Activated Photoresponse in a Graphene p–n Junction". Nano Letters 11, n.º 10 (12 de octubre de 2011): 4134–37. http://dx.doi.org/10.1021/nl2019068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hammam, Ahmed M. M., Marek E. Schmidt, Manoharan Muruganathan y Hiroshi Mizuta. "Sharp switching behaviour in graphene nanoribbon p-n junction". Carbon 121 (septiembre de 2017): 399–407. http://dx.doi.org/10.1016/j.carbon.2017.05.097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Li, Xiao, Lili Fan, Zhen Li, Kunlin Wang, Minlin Zhong, Jinquan Wei, Dehai Wu y Hongwei Zhu. "Boron Doping of Graphene for Graphene-Silicon p-n Junction Solar Cells". Advanced Energy Materials 2, n.º 4 (17 de febrero de 2012): 425–29. http://dx.doi.org/10.1002/aenm.201100671.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhou, Xingfei, Ziying Wu, Yuchen Bai, Qicheng Wang, Zhentao Zhu, Wei Yan y Yafang Xu. "Light-modulated electron retroreflection and Klein tunneling in a graphene-based n–p–n junction". Chinese Physics B 31, n.º 4 (1 de marzo de 2022): 047301. http://dx.doi.org/10.1088/1674-1056/ac2b94.

Texto completo
Resumen
We investigate the electron retroreflection and the Klein tunneling across a graphene-based n–p–n junction irradiated by linearly polarized off-resonant light with the polarization along the x direction. The linearly polarized off-resonant light modifies the band structure of graphene, which leads to the anisotropy of band structure. By adjusting the linearly polarized light and the direction of n–p–n junction simultaneously, the electron retroreflection appears and the anomalous Klein tunneling, the perfect transmission at a nonzero incident angle regardless of the width and height of potential barrier, happens, which arises from the fact that the light-induced anisotropic band structure changes the relation of wavevector and velocity of electron. Our finding provides an alternative and flexible method to modulate electron retroreflection and Klein tunneling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, J. X., Q. Q. Huang, C. L. Wu, Z. J. Wei, N. N. Xuan, Z. Z. Sun, Y. Y. Fu y R. Huang. "Realization of controllable graphene p–n junctions through gate dielectric engineering". RSC Advances 5, n.º 98 (2015): 80496–500. http://dx.doi.org/10.1039/c5ra10921c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Khurelbaatar, Zagarzusem y Chel Jong Choi. "Graphene/Ge Schottky Junction Based IR Photodetectors". Solid State Phenomena 271 (enero de 2018): 133–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.271.133.

Texto completo
Resumen
Ge p-i-n photodetectors with and without graphene on active area fabricated and investigated the graphene effects on opto-electrical properties of photodetectors. The photodetectors were characterized with respect to their dark, photocurrents and responsivities in the wavelength range between 1530-1630 nm. For a 250 um-diameter device at room temperature, it was found that dark current of p-i-n photodetector with graphene were reduced significantly compared with photodetector without graphene. This improvement is attributed to the passivation of the graphene layers that leads to the efficient light detection. Therefore, it is noted that the uniform coverage of graphene onto the Ge surface plays a significant role in advancing their opto-electrical performance of photodetector.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ho, Po-Hsun, Wei-Chen Lee, Yi-Ting Liou, Ya-Ping Chiu, Yi-Siang Shih, Chun-Chi Chen, Pao-Yun Su et al. "Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics". Energy & Environmental Science 8, n.º 7 (2015): 2085–92. http://dx.doi.org/10.1039/c5ee00548e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Jung, Minkyung, Peter Rickhaus, Simon Zihlmann, Alexander Eichler, Peter Makk y Christian Schönenberger. "GHz nanomechanical resonator in an ultraclean suspended graphene p–n junction". Nanoscale 11, n.º 10 (2019): 4355–61. http://dx.doi.org/10.1039/c8nr09963d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Syariati, Rifky, Endi Suhendi, Fatimah A. Noor, Mikrajuddin Abdullah y Khairurrijal. "Modeling of Electron Tunneling Current in a p-n Junction Based on Strained Armchair Graphene Nanoribbon". International Journal of Applied Physics and Mathematics 4, n.º 4 (2014): 259–62. http://dx.doi.org/10.7763/ijapm.2014.v4.295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Park, Chang-Soo. "Band-Gap tuned oscillatory conductance in bilayer graphene n-p-n junction". Journal of Applied Physics 116, n.º 3 (21 de julio de 2014): 033702. http://dx.doi.org/10.1063/1.4890224.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

He, Xin, Ning Tang, Li Gao, Junxi Duan, Yuewei Zhang, Fangchao Lu, Fujun Xu et al. "Formation of p-n-p junction with ionic liquid gate in graphene". Applied Physics Letters 104, n.º 14 (7 de abril de 2014): 143102. http://dx.doi.org/10.1063/1.4870656.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Woszczyna, M., M. Friedemann, T. Dziomba, Th Weimann y F. J. Ahlers. "Graphene p-n junction arrays as quantum-Hall resistance standards". Applied Physics Letters 99, n.º 2 (11 de julio de 2011): 022112. http://dx.doi.org/10.1063/1.3608157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Yang, Mou, Xian-Jin Ran, Yan Cui y Rui-Qiang Wang. "Conductance oscillation of graphene nanoribbon with tilted p-n junction". Journal of Applied Physics 111, n.º 8 (15 de abril de 2012): 083708. http://dx.doi.org/10.1063/1.4704388.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Rahmani, Meisam, M. T. Ahmadi, Mohammad Javad Kiani y Razali Ismail. "Monolayer Graphene Nanoribbon pn Junction". Journal of Nanoengineering and Nanomanufacturing 2, n.º 4 (1 de diciembre de 2012): 375–78. http://dx.doi.org/10.1166/jnan.2012.1097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Mulyana, Yana, Mutsunori Uenuma, Naofumi Okamoto, Yasuaki Ishikawa, Ichiro Yamashita y Yukiharu Uraoka. "Creating Reversible p–n Junction on Graphene through Ferritin Adsorption". ACS Applied Materials & Interfaces 8, n.º 12 (17 de marzo de 2016): 8192–200. http://dx.doi.org/10.1021/acsami.5b12226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tian, Pin, Libin Tang, Kar Seng Teng, Jinzhong Xiang y Shu Ping Lau. "Recent Advances in Graphene Homogeneous p–n Junction for Optoelectronics". Advanced Materials Technologies 4, n.º 7 (12 de abril de 2019): 1900007. http://dx.doi.org/10.1002/admt.201900007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Xu, Xiaodan, Cong Wang, Yang Liu, Xiaofeng Wang, Nan Gong, Zhimao Zhu, Bin Shi et al. "A graphene P–N junction induced by single-gate control of dielectric structures". Journal of Materials Chemistry C 7, n.º 29 (2019): 8796–802. http://dx.doi.org/10.1039/c9tc02474c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Phan, Duy-Thach y Gwiy-Sang Chung. "P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111)". Journal of Physics and Chemistry of Solids 74, n.º 11 (noviembre de 2013): 1509–14. http://dx.doi.org/10.1016/j.jpcs.2013.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Saisa-ard, Chaipattana, I. Ming Tang y Rassmidara Hoonsawat. "Effects of band gap opening on an n–p–n bilayer graphene junction". Physica E: Low-dimensional Systems and Nanostructures 43, n.º 5 (marzo de 2011): 1061–64. http://dx.doi.org/10.1016/j.physe.2010.12.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Rajabi, Mehran, Mina Amirmazlaghani y Farshid Raissi. "Graphene-Based Bipolar Junction Transistor". ECS Journal of Solid State Science and Technology 10, n.º 11 (1 de noviembre de 2021): 111004. http://dx.doi.org/10.1149/2162-8777/ac3551.

Texto completo
Resumen
Graphene was considered likely to revolutionize the electronics industry. This expectation has not yet been fulfilled, mainly due to the non-ideal characteristics of graphene-based transistors. Here, we propose a novel graphene-based structure as a graphene-based bipolar junction transistor (G-BJT), a nanoscale transistor which has the ideal characteristics of the common BJT transistor. In this device, N-P-N regions are formed in the graphene channel by applying voltages to the three gates. The carrier concentrations, energy band diagrams, and current-voltage curves are measured and presented. The base-emitter junction shows a rectifying behavior with the ideality factor in the range of (2.8–3.2), the built-in potential of 0.38V, and the saturation current of 10−12 A. The G-BJT provides a minimum current gain of 20 at the base-width of 10 nm, a feature that cannot be easily obtained in Si-based BJTs. Interestingly, the current gain(β) can be controlled by the gate voltages in G-BJT and changes by 26.5% compared to the maximum value, which leads to the controllability of this proposed transistor. Identical BJT behavior, scalability down to nanometer range, large carrier mobility, along the controllable current gain of G-BJT make this transistor a good candidate for the next generation of the nanoelectronics industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Murakami, N., Y. Sugiyama, Y. Ohno y M. Nagase. "Blackbody-like infrared radiation in stacked graphene P–N junction diode". Japanese Journal of Applied Physics 60, SC (22 de febrero de 2021): SCCD01. http://dx.doi.org/10.35848/1347-4065/abe208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Sohn, Yeongsup, Woo Jong Shin, Sae Hee Ryu, Minjae Huh, Seyeong Cha y Keun Su Kim. "Graphene p-n junction formed on SiC(0001) by Au intercalation". Journal of the Korean Physical Society 78, n.º 1 (15 de diciembre de 2020): 40–44. http://dx.doi.org/10.1007/s40042-020-00010-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Li, Yuan, Mansoor B. A. Jalil y Guanghui Zhou. "Giant magnetoresistance modulated by magnetic field in graphene p-n junction". Applied Physics Letters 105, n.º 19 (10 de noviembre de 2014): 193108. http://dx.doi.org/10.1063/1.4901743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Nakaharai, Shu, Tomohiko Iijima, Shinichi Ogawa, Hisao Miyazaki, Songlin Li, Kazuhito Tsukagoshi, Shintaro Sato y Naoki Yokoyama. "Gate-Controlled P–I–N Junction Switching Device with Graphene Nanoribbon". Applied Physics Express 5, n.º 1 (12 de diciembre de 2011): 015101. http://dx.doi.org/10.1143/apex.5.015101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Jung, Minkyung, Peter Rickhaus, Simon Zihlmann, Peter Makk y Christian Schönenberger. "Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p–n Junction". Nano Letters 16, n.º 11 (11 de octubre de 2016): 6988–93. http://dx.doi.org/10.1021/acs.nanolett.6b03078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Xu, Lei, Jin An y Chang-De Gong. "Quantized four-terminal resistances in a ferromagnetic graphene p–n junction". Journal of Physics: Condensed Matter 24, n.º 22 (2 de mayo de 2012): 225301. http://dx.doi.org/10.1088/0953-8984/24/22/225301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Liu, Chieh-I., Dominick S. Scaletta, Dinesh K. Patel, Mattias Kruskopf, Antonio Levy, Heather M. Hill y Albert F. Rigosi. "Analysing quantized resistance behaviour in graphene Corbino p-n junction devices". Journal of Physics D: Applied Physics 53, n.º 27 (5 de mayo de 2020): 275301. http://dx.doi.org/10.1088/1361-6463/ab83bb.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Zhu, Minmin, Jing Wu, Zehui Du, Siuhon Tsang y Edwin Hang Tong Teo. "Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation". Journal of Applied Physics 124, n.º 21 (7 de diciembre de 2018): 215302. http://dx.doi.org/10.1063/1.5052589.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ali, Asif, So-Young Kim, Muhammad Hussain, Syed Hassan Abbas Jaffery, Ghulam Dastgeer, Sajjad Hussain, Bach Thi Phuong Anh, Jonghwa Eom, Byoung Hun Lee y Jongwan Jung. "Deep-Ultraviolet (DUV)-Induced Doping in Single Channel Graphene for Pn-Junction". Nanomaterials 11, n.º 11 (9 de noviembre de 2021): 3003. http://dx.doi.org/10.3390/nano11113003.

Texto completo
Resumen
The electronic properties of single-layer, CVD-grown graphene were modulated by deep ultraviolet (DUV) light irradiation in different radiation environments. The graphene field-effect transistors (GFETs), exposed to DUV in air and pure O2, exhibited p-type doping behavior, whereas those exposed in vacuum and pure N2 gas showed n-type doping. The degree of doping increased with DUV exposure time. However, n-type doping by DUV in vacuum reached saturation after 60 min of DUV irradiation. The p-type doping by DUV in air was observed to be quite stable over a long period in a laboratory environment and at higher temperatures, with little change in charge carrier mobility. The p-doping in pure O2 showed ~15% de-doping over 4 months. The n-type doping in pure N2 exhibited a high doping effect but was highly unstable over time in a laboratory environment, with very marked de-doping towards a pristine condition. A lateral pn-junction of graphene was successfully implemented by controlling the radiation environment of the DUV. First, graphene was doped to n-type by DUV in vacuum. Then the n-type graphene was converted to p-type by exposure again to DUV in air. The n-type region of the pn-junction was protected from DUV by a thick double-coated PMMA layer. The photocurrent response as a function of Vg was investigated to study possible applications in optoelectronics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Lü, Xiao-Long y Hang Xie. "Bipolar and unipolar valley filter effects in graphene-based P/N junction". New Journal of Physics 22, n.º 7 (14 de julio de 2020): 073003. http://dx.doi.org/10.1088/1367-2630/ab950d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Liu, Jingping, Safieddin Safavi‐Naeini y Dayan Ban. "Fabrication and measurement of graphene p–n junction with two top gates". Electronics Letters 50, n.º 23 (noviembre de 2014): 1724–26. http://dx.doi.org/10.1049/el.2014.3061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Suszalski, Dominik, Grzegorz Rut y Adam Rycerz. "Mesoscopic valley filter in graphene Corbino disk containing a p–n junction". Journal of Physics: Materials 3, n.º 1 (21 de noviembre de 2019): 015006. http://dx.doi.org/10.1088/2515-7639/ab5082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Williams, J. R., L. DiCarlo y C. M. Marcus. "Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene". Science 317, n.º 5838 (3 de agosto de 2007): 638–41. http://dx.doi.org/10.1126/science.1144657.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Chiu, Hsin-Ying, Vasili Perebeinos, Yu-Ming Lin y Phaedon Avouris. "Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic Substrate Engineering". Nano Letters 10, n.º 11 (10 de noviembre de 2010): 4634–39. http://dx.doi.org/10.1021/nl102756r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Xu, Dikai, Xuegong Yu, Dace Gao, Cheng Li, Mengyao Zhong, Haiyan Zhu, Shuai Yuan, Zhan Lin y Deren Yang. "Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer". Journal of Materials Chemistry A 4, n.º 27 (2016): 10558–65. http://dx.doi.org/10.1039/c6ta02868c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Wang, Hong, Xiaoli Zheng, Haining Chen, Keyou Yan, Zonglong Zhu y Shihe Yang. "The nanoscale carbon p–n junction between carbon nanotubes and N,B-codoped holey graphene enhances the catalytic activity towards selective oxidation". Chem. Commun. 50, n.º 56 (2014): 7517–20. http://dx.doi.org/10.1039/c4cc01707b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Forrester, Derek Michael y Feodor V. Kusmartsev. "Graphene levitons and anti-levitons in magnetic fields". Nanoscale 6, n.º 13 (2014): 7594–603. http://dx.doi.org/10.1039/c4nr00754a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Yu, Tianhua, Chen-Wei Liang, Changdong Kim y Bin Yu. "Local electrical stress-induced doping and formation of monolayer graphene P-N junction". Applied Physics Letters 98, n.º 24 (13 de junio de 2011): 243105. http://dx.doi.org/10.1063/1.3593131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Morozovska, Anna N., Eugene A. Eliseev y Maksym V. Strikha. "Ballistic conductivity of graphene channel with p-n junction at ferroelectric domain wall". Applied Physics Letters 108, n.º 23 (6 de junio de 2016): 232902. http://dx.doi.org/10.1063/1.4953226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía