Artículos de revistas sobre el tema "Graphene macrostructures"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Graphene macrostructures.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 41 mejores artículos de revistas para su investigación sobre el tema "Graphene macrostructures".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Yin, Ruilin, Kun Wang, Beibei Han, Guiying Xu, Lixiang Li, Baigang An, Dongying Ju, Maorong Chai, Songnan Li y Weimin Zhou. "Structural Evaluation of Coal-Tar-Pitch-Based Carbon Materials and Their Na+ Storage Properties". Coatings 11, n.º 8 (8 de agosto de 2021): 948. http://dx.doi.org/10.3390/coatings11080948.

Texto completo
Resumen
Linking to the S element hybrid strategies, S-doped carbon materials having different macrostructures and defect concentrations are prepared by using sulfur and coal-tar-pitch as raw materials in a carbonization temperature range of 700–1000 °C. The evaluations of macrostructure and surface characteristics are performed through XRD, TEM, Raman and XPS measurements. Through the linear fitting among the Na+ storage capacity with ID/IG and d002 values, the correlations of Na+ storage capacity with macrostructures and defects are respectively investigated in detail. It is observed that S-doped carbon materials exhibit storage capacity at 120 mAh/g after the charge-discharge is being carried out 2000 cycles at 2.0 A/g. Studies have shown that adsorptions of introduced defects on graphene-like carbon sheets mainly play the role to enhance the storage capacity, and the expanded carbonaceous lamellar spaces of highly disordered and pseudo-graphitic macrostructures provide the channels for fast transfer of Na+. Our studies are able to provide references for designs and fabrications of coal tar pitch based soft carbon materials as sodium-ion batteries (SIBs) anodes when using heteroatoms doping methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Ranran, Ke Li, Runze Liu, Mansoor Sarfraz, Imran Shakir y Yuxi Xu. "Reversible 3D self-assembly of graphene oxide and stimuli-responsive polymers for high-performance graphene-based supercapacitors". Journal of Materials Chemistry A 5, n.º 36 (2017): 19098–106. http://dx.doi.org/10.1039/c7ta05908f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mohd Firdaus, Rabita, Nawal Berrada, Alexandre Desforges, Abdul Rahman Mohamed y Brigitte Vigolo. "From 2D Graphene Nanosheets to 3D Graphene‐based Macrostructures". Chemistry – An Asian Journal 15, n.º 19 (4 de septiembre de 2020): 2902–24. http://dx.doi.org/10.1002/asia.202000747.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cui, Huijuan, Yibo Guo y Zhen Zhou. "Three‐Dimensional Graphene‐Based Macrostructures for Electrocatalysis". Small 17, n.º 22 (18 de marzo de 2021): 2005255. http://dx.doi.org/10.1002/smll.202005255.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yousefi, Nariman, Xinglin Lu, Menachem Elimelech y Nathalie Tufenkji. "Environmental performance of graphene-based 3D macrostructures". Nature Nanotechnology 14, n.º 2 (7 de enero de 2019): 107–19. http://dx.doi.org/10.1038/s41565-018-0325-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Haitao, Xueyue Mi, Yi Li y Sihui Zhan. "3D Graphene‐Based Macrostructures for Water Treatment". Advanced Materials 32, n.º 3 (10 de mayo de 2019): 1806843. http://dx.doi.org/10.1002/adma.201806843.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chen, Zhangjingzhi, Jun Wang, Xiaoguang Duan, Yuanyuan Chu, Xiaoyao Tan, Shaomin Liu y Shaobin Wang. "Facile fabrication of 3D ferrous ion crosslinked graphene oxide hydrogel membranes for excellent water purification". Environmental Science: Nano 6, n.º 10 (2019): 3060–71. http://dx.doi.org/10.1039/c9en00638a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yu, Zijun, Li Wei, Lun Lu, Yi Shen, Yang Zhang, Jun Wang y Xiaoyao Tan. "Structural Manipulation of 3D Graphene-Based Macrostructures for Water Purification". Gels 8, n.º 10 (29 de septiembre de 2022): 622. http://dx.doi.org/10.3390/gels8100622.

Texto completo
Resumen
The rapid development of graphene-based nanotechnologies in recent years has drawn extensive attention in environmental applications, especially for water treatment. Three-dimensional graphene-based macrostructures (GBMs) have been considered to be promising materials for practical water purification due to their well-defined porous structure and integrated morphology, and displayed outstanding performance in pollutant abatement with easy recyclability. Three-dimensional GBMs could not only retain the intrinsic priorities of 2D graphene, but also emerge with extraordinary properties by structural manipulation, so rational design and construction of 3D GBMs with desirable microstructures are important to exploit their potential for water treatment. In this review, some important advances in surface modification (chemical doping, wettability, surface charge) and geometrical control (porous structure, oriented arrangement, shape and density) with respect to 3D GBMs have been described, while their applications in water purification including adsorption (organic pollutants, heavy metal ions), catalysis (photocatalysis, Fenton-like advanced oxidation) and capacitive desalination (CDI) are detailly discussed. Finally, future challenges and prospective for 3D GBMs in water purification are proposed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Restivo, João, Olívia Salomé Gonçalves Pinto Soares y Manuel Fernando Ribeiro Pereira. "Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis". Processes 8, n.º 11 (22 de octubre de 2020): 1329. http://dx.doi.org/10.3390/pr8111329.

Texto completo
Resumen
A large number of methodologies for fabrication of 1D carbon nanomaterials have been developed in the past few years and are extensively described in the literature. However, for many applications, and in particular in catalysis, a translation of the materials to a macro-structured form is often required towards their use in practical operation conditions. This review intends to describe the available methods currently used for fabrication of such macro-structures, either already applied or with potential for application in the fabrication of macro-structured catalysts containing 1D carbon nanomaterials. A review of the processing methods used in the fabrication of macrostructures containing 1D sp2 hybridized carbon nanomaterials is presented. The carbon nanomaterials here discussed include single- and multi-walled carbon nanotubes, and several types of carbon nanofibers (fishbone, platelet, stacked cup, etc.). As the processing methods used in the fabrication of the macrostructures are generally very similar for any of the carbon nanotubes or nanofibers due to their similar chemical nature (constituted by stacked ordered graphene planes), the review aggregates all under the carbon nanofiber (CNF) moniker. The review is divided into methods where the CNFs are synthesized already in the form of a macrostructure (in situ methods) or where the CNFs are previously synthesized and then further processed into the desired macrostructures (ex situ methods). We highlight in particular the advantages of each approach, including a (non-exhaustive) description of methods commonly described for in situ and ex situ preparation of the catalytic macro-structures. The review proposes methods useful in the preparation of catalytic structures, and thus a number of techniques are left out which are used in the fabrication of CNF-containing structures with no exposure of the carbon materials to reactants due to, for example, complete coverage of the CNF. During the description of the methodologies, several different macrostructures are described. A brief overview of the potential applications of such structures in catalysis is also offered herein, together with a short description of the catalytic potential of CNFs in general.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Singh, Rasmeet, Sajid Ullah, Nikita Rao, Mandeep Singh, Indrajit Patra, Daniel Amoako Darko, C. Prince Jebedass Issac, Keyvan Esmaeilzadeh-Salestani, Rahul Kanaoujiya y V. Vijayan. "Synthesis of Three-Dimensional Reduced-Graphene Oxide from Graphene Oxide". Journal of Nanomaterials 2022 (3 de marzo de 2022): 1–18. http://dx.doi.org/10.1155/2022/8731429.

Texto completo
Resumen
Carbon materials and their allotropes have been involved significantly in our daily lives. Zero-dimensional (0D) fullerenes, one-dimensional (1D) carbon materials, and two-dimensional (2D) graphene materials have distinctive properties and thus received immense attention from the early 2000s. To meet the growing demand for these materials in applications like energy storage, electrochemical catalysis, and environmental remediation, the special category, i.e., three-dimensional (3D) structures assembled from graphene sheets, has been developed. Graphene oxide is a chemically altered graphene, the desired building block for 3D graphene matter (i.e., 3D graphene macrostructures). A simple synthesis route and pore morphologies make 3D reduced-graphene oxide (rGO) a major candidate for the 3D graphene group. To obtain target-specific 3D rGO, its synthesis mechanism plays an important role. Hence, in this article, we will discuss the general mechanism for 3D rGO synthesis, vital procedures for fabricating advanced 3D rGO, and important aspects controlling the growth of 3D rGO.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Xu, Yuxi, Gaoquan Shi y Xiangfeng Duan. "Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors". Accounts of Chemical Research 48, n.º 6 (4 de junio de 2015): 1666–75. http://dx.doi.org/10.1021/acs.accounts.5b00117.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Huang, Zhi-Wei, Zi-Jie Li, Qun-Yan Wu, Li-Rong Zheng, Li-Min Zhou, Zhi-Fang Chai, Xiao-Lin Wang y Wei-Qun Shi. "Simultaneous elimination of cationic uranium(vi) and anionic rhenium(vii) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study". Environmental Science: Nano 5, n.º 9 (2018): 2077–87. http://dx.doi.org/10.1039/c8en00677f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Shen, Yi, Xiaoying Zhu y Baoliang Chen. "Size effects of graphene oxide nanosheets on the construction of three-dimensional graphene-based macrostructures as adsorbents". Journal of Materials Chemistry A 4, n.º 31 (2016): 12106–18. http://dx.doi.org/10.1039/c6ta04112d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mohd Firdaus, Rabita, Nawal Berrada, Alexandre Desforges, Abdul Rahman Mohamed y Brigitte Vigolo. "Front Cover: From 2D Graphene Nanosheets to 3D Graphene‐based Macrostructures (Chem. Asian J. 19/2020)". Chemistry – An Asian Journal 15, n.º 19 (7 de septiembre de 2020): 2900. http://dx.doi.org/10.1002/asia.202000950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

de la Osa, Gregorio, Domingo Pérez-Coll, Pilar Miranzo, María Isabel Osendi y Manuel Belmonte. "Printing of Graphene Nanoplatelets into Highly Electrically Conductive Three-Dimensional Porous Macrostructures". Chemistry of Materials 28, n.º 17 (31 de agosto de 2016): 6321–28. http://dx.doi.org/10.1021/acs.chemmater.6b02662.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fang, Qile, Yi Shen y Baoliang Chen. "Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review". Chemical Engineering Journal 264 (marzo de 2015): 753–71. http://dx.doi.org/10.1016/j.cej.2014.12.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Shen, Yi, Qile Fang y Baoliang Chen. "Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection". Environmental Science & Technology 49, n.º 1 (16 de diciembre de 2014): 67–84. http://dx.doi.org/10.1021/es504421y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Xu, Yuxi, Chih-Yen Chen, Zipeng Zhao, Zhaoyang Lin, Chain Lee, Xu Xu, Chen Wang, Yu Huang, Muhammad Imran Shakir y Xiangfeng Duan. "Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors". Nano Letters 15, n.º 7 (9 de junio de 2015): 4605–10. http://dx.doi.org/10.1021/acs.nanolett.5b01212.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chowdhury, Shamik y Rajasekhar Balasubramanian. "Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation". Progress in Materials Science 90 (octubre de 2017): 224–75. http://dx.doi.org/10.1016/j.pmatsci.2017.07.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Yogapriya, R. y K. K. R. Datta. "Porous Fluorinated Graphene and ZIF-67 Composites with Hydrophobic-Oleophilic Properties Towards Oil and Organic Solvent Sorption". Journal of Nanoscience and Nanotechnology 20, n.º 5 (1 de mayo de 2020): 2930–38. http://dx.doi.org/10.1166/jnn.2020.17465.

Texto completo
Resumen
Designing hydrophobic-oleophilic sorbent materials have gained significant interest owing to its potential applications in self-cleaning technologies particularly oil-water separation. The crucial factors remain in the future research of designing materials with high performance hydrophobicoleophilic properties include facile synthesis, low-density, reusability and ecofriendly. Herein, we develop porous hydrophobic-oleophilic nanoarchitecture based on 2D fluorinated graphene (FG) supported cobalt based zeolite imidazole framework (ZIF-67) by solution assisted self-assembly. The key features of the work include in-situ growth and assembly of ZIF-67 over functionalized fluorinated graphene f-FG macrostructures, high surface area and solution processable and spray coated sponge. Methodical characterization of f-FG@ZIF-67 composites, followed by measuring water contact angles by contact angle goniometer. Furthermore, the assessment of sorption capacity of oils and organics followed by oil recovery from oil-water mixtures, excellent chemical and physical stabilities were displayed by these hydrophobic-oleophilic composites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Fang, Zheng, Yongyou Hu, Jianhua Cheng y Yuancai Chen. "Continuous removal of trace bisphenol A from water by high efficacy TiO2 nanotube pillared graphene-based macrostructures in a photocatalytically fluidized bed". Chemical Engineering Journal 372 (septiembre de 2019): 581–89. http://dx.doi.org/10.1016/j.cej.2019.04.129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Yang, Kaijie, Jun Wang, Xiaoxiao Chen, Qiang Zhao, Abdul Ghaffar y Baoliang Chen. "Application of graphene-based materials in water purification: from the nanoscale to specific devices". Environmental Science: Nano 5, n.º 6 (2018): 1264–97. http://dx.doi.org/10.1039/c8en00194d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Hsieh, Yu-Yun, Yu Zhang, Lu Zhang, Yanbo Fang, Sathya Narayan Kanakaraaj, Je-Hyeong Bahk y Vesselin Shanov. "High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline". Nanoscale 11, n.º 14 (2019): 6552–60. http://dx.doi.org/10.1039/c8nr10537e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Fang, Qile y Baoliang Chen. "Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification". J. Mater. Chem. A 2, n.º 23 (2014): 8941–51. http://dx.doi.org/10.1039/c4ta00321g.

Texto completo
Resumen
3D macrostructural aerogels were synthesized based on the self-assembly of graphene oxide and LDHs, which exhibited excellent hydrophilicity, structural stability, and superior adsorption properties in water purification.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lauermannová, Anna-Marie, Filip Antončík, Michal Lojka, Ondřej Jankovský, Milena Pavlíková, Adam Pivák, Martina Záleská y Zbyšek Pavlík. "The Impact of Graphene and Diatomite Admixtures on the Performance and Properties of High-Performance Magnesium Oxychloride Cement Composites". Materials 13, n.º 24 (14 de diciembre de 2020): 5708. http://dx.doi.org/10.3390/ma13245708.

Texto completo
Resumen
A high-performance magnesium oxychloride cement (MOC) composite composed of silica sand, diatomite powder, and doped with graphene nanoplatelets was prepared and characterized. Diatomite was used as a 10 vol.% replacement for silica sand. The dosage of graphene was 0.5 wt.% of the sum of the MgO and MgCl2·6H2O masses. The broad product characterization included high-resolution transmission electron microscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy analyses. The macrostructural parameters, pore size distribution, mechanical resistance, stiffness, hygric and thermal parameters of the composites matured for 28-days were also the subject of investigation. The combination of diatomite and graphene nanoplatelets greatly reduced the porosity and average pore size in comparison with the reference material composed of MOC and silica sand. In the developed composites, well stable and mechanically resistant phase 5 was the only precipitated compound. Therefore, the developed composite shows high compactness, strength, and low water imbibition which ensure high application potential of this novel type of material in the construction industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ren, Guofeng y Zhaoyang Fan. "VO2(B)/Graphene Forest for High-Rate Li-Ion Battery". MRS Proceedings 1773 (2015): 7–14. http://dx.doi.org/10.1557/opl.2015.536.

Texto completo
Resumen
ABSTRACT2D nanomaterials, when assembled into an ordered macrostructure, will present many great opportunities, including for Li-ion batteries (LIBs). We report densely-packed vertically-aligned VO2(B) nanobelts (NBs)-based forest structure synthesized on edge-oriented graphene (EOG) network. Using a EOG/Ni foam as a 3D scaffold, aligned VO2(B) NBs can be further synthesized into a folded 3D forest structure to construct a freestanding electrode for LIBs. Electrochemical studies found that such a freestanding VO2(B)/EOG electrode, which combines the unique merits of 2D VO2(B) NBs and 2D graphene sheets, has excellent charge-discharge rate performance. A discharge capacity of 178 mAh g-1 at a rate of 59 C and 100 mAh g-1 at 300 C was measured. A good charge-discharge cycling stability under a high current density was also demonstrated. The results indicate VO2(B)/EOG forest based freestanding electrode is very promising for developing high-rate LIBs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Cheng, Huhu, Yaxin Huang, Gaoquan Shi, Lan Jiang y Liangti Qu. "Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators". Accounts of Chemical Research 50, n.º 7 (28 de junio de 2017): 1663–71. http://dx.doi.org/10.1021/acs.accounts.7b00131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Tan, Bing, Huimin Zhao, Yaobin Zhang, Xie Quan, Zehao He, Wenting Zheng y Bingyu Shi. "Amphiphilic PA-induced three-dimensional graphene macrostructure with enhanced removal of heavy metal ions". Journal of Colloid and Interface Science 512 (febrero de 2018): 853–61. http://dx.doi.org/10.1016/j.jcis.2017.10.092.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Kim, Han, Sung-Oong Kang, Sungyoul Park y Ho Seok Park. "Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure". Journal of Industrial and Engineering Chemistry 21 (enero de 2015): 1191–96. http://dx.doi.org/10.1016/j.jiec.2014.05.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Chu, Zengyong, Guochen Li, Xiaofeng Gong, Zhenkai Zhao, Yinlong Tan y Zhenhua Jiang. "Hierarchical Wrinkles for Tunable Strain Sensing Based on Programmable, Anisotropic, and Patterned Graphene Hybrids". Polymers 14, n.º 14 (9 de julio de 2022): 2800. http://dx.doi.org/10.3390/polym14142800.

Texto completo
Resumen
Flexible, stretchable, wearable, and stable electronic materials are widely studied, owing to their applications in wearable devices and the Internet of Things. Because of the demands for both strain-insensitive resistors and high gauge factor (GF) strain-sensitive materials, anisotropic strain sensitivity has been an important aspect of electronic materials. In addition, the materials should have adjustable strain sensitivities. In this work, such properties are demonstrated in reduced graphene oxide (RGO) with hierarchical oriented wrinkle microstructures, generated using the two-step shrinkage of a rubber substrate. The GF values range from 0.15 to 28.32 at 100% strain. For device demonstrations, macrostructure patterns are designed to prepare patterned wrinkling graphene at rubber substrate (PWG@R). Serpentiform curves can be used for the constant-value resistor, combined with the first-grade wrinkles. Strip lines can increase the strain-sensing property, along with the second-grade wrinkles. The patterned sensor exhibits improved GF values range from 0.05 to 49.5. The assembled sensor shows an excellent stability (>99% retention after 600 cycles) with a high GF (49.5). It can monitor the vital signs of the throat and wrist and sense large motions of fingers. Thus, PWG@R-based strain sensors have great potential in various health or motion monitoring fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Huang, Zhi-Wei, Zi-Jie Li, Li-Rong Zheng, Wang-Suo Wu, Zhi-Fang Chai y Wei-Qun Shi. "Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation". Environmental Pollution 248 (mayo de 2019): 82–89. http://dx.doi.org/10.1016/j.envpol.2019.01.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Islam, Md Monirul, Shaikh Nayeem Faisal, Taslima Akhter, Anup Kumar Roy, Andrew I. Minett, Konstantin Konstantinov y Shi Xue Dou. "Liquid-Crystal-Mediated 3D Macrostructured Composite of Co/Co3 O4 Embedded in Graphene: Free-Standing Electrode for Efficient Water Splitting". Particle & Particle Systems Characterization 34, n.º 9 (3 de marzo de 2017): 1600386. http://dx.doi.org/10.1002/ppsc.201600386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Feng, Xianlu, Bin Qiu y Dezhi Sun. "Enhanced naproxen adsorption by a novel β-cyclodextrin immobilized the three-dimensional macrostructure of reduced graphene oxide and multiwall carbon nanotubes". Separation and Purification Technology 290 (junio de 2022): 120837. http://dx.doi.org/10.1016/j.seppur.2022.120837.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Sun, Anqi, Xuan Hou y Xiangang Hu. "Super-performance photothermal conversion of 3D macrostructure graphene-CuFeSe2 aerogel contributes to durable and fast clean-up of highly viscous crude oil in seawater". Nano Energy 70 (abril de 2020): 104511. http://dx.doi.org/10.1016/j.nanoen.2020.104511.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

"Graphene macrostructures and the environment". Nature Nanotechnology 14, n.º 2 (febrero de 2019): 99. http://dx.doi.org/10.1038/s41565-019-0385-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Hirani, Rajan Arjan Kalyan, Abdul Hannan Asif, Nasir Rafique, Lei Shi, Shu Zhang, Hong Wu y Hongqi Sun. "Wastewater Remediation Technologies Using Macroscopic Graphene-Based Materials: A Perspective". Frontiers in Nanotechnology 3 (18 de mayo de 2021). http://dx.doi.org/10.3389/fnano.2021.688552.

Texto completo
Resumen
Three-dimensional (3D) graphene-based macrostructures are being developed to combat the issues associated with two-dimensional (2D) graphene materials in practical applications. The 3D macrostructures (3DMs), for example, membranes, fibres, sponges, beads, and mats, can be formed by the self-assembly of 2D graphene-based precursors with exceptional surface area and unique chemistry. With rational design, the 3D macrostructures can then possess outstanding properties and exclusive structures. Thanks to various advantages, these macrostructures are competing in a variety of applications with promising performances unlike the traditional activated carbons, biochars and hydrochars, which have less flexibilities for modifications towards versatile applications. However, despite having such a wide range of applications, 3DMs remain applicable on laboratory scale due to the associated factors like cost and extensive research. This perspective provides an overview of available graphene-based macrostructures and their diverse synthesis protocols. In the synthesis, hydrothermal route, chemical vapor deposition (CVD), wet spinning, 3D printing, vacuum filtration, spray drying and emulsion methods are highlighted. In addition, the physio-chemical properties of these macrostructures are discussed with the relationship among the porosity, surface area and the bulk density. The perspective also highlights the versatile potentials of different 3DMs in wastewater remediation by adsorption, desalination, and catalytic oxidation, etc. Following the concluding remarks, future outlooks on commercial applications of 3DMs are also provided.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Yingying, Qiyue Xiao, Qiuyan Wang, Yan Zhang, Ping Wang y Yuanyuan Li. "A review of wearable carbon-based sensors for strain detection: fabrication methods, properties, and mechanisms". Textile Research Journal, 16 de enero de 2023, 004051752211482. http://dx.doi.org/10.1177/00405175221148263.

Texto completo
Resumen
Carbon-based flexible wearable sensors have received widespread attention due to their wide application in wearable electronics. This work reviewed the different carbon-based sensors from three aspects, such as fabrication, performance and working mechanisms. Carbon materials mainly included carbon nanotubes, graphene, carbon black and other carbon materials. In particular, carbon nanotubes and graphene can be assembled into various multiscale macrostructures to prepare various forms of flexible sensors, such as films, fibers, yarns or fabrics. Up to now, the reviewed flexible strain sensors in general exhibit high sensitivity, wide sensing range, fast response, long-term stability and durability. However, in the face of complex environmental and multifunctional integration in practical applications, wearable strain sensors need new technological breakthroughs in the preparation process, material synthesis and device integration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zou, Jianli y Franklin Kim. "Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures". Nature Communications 5, n.º 1 (16 de octubre de 2014). http://dx.doi.org/10.1038/ncomms6254.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

luo, weichu, Zhidong Xia, Wei Zhou, Xiaojie Wei y Pei Huang. "An embedded printed flexible strain resistance sensor via micro-structure design on graphene-filled conductive silicon rubber". Smart Materials and Structures, 4 de octubre de 2022. http://dx.doi.org/10.1088/1361-665x/ac976b.

Texto completo
Resumen
Abstract Flexible sensors with multifunction are tremendously attractive with the assistance of materials design, novel manufacturing, as well as microstructure fabrication. In this study, graphene was efficiently dispersed in a solvent and filled into silicon rubber (SR), which was forward embedded-printed as a flexible strain resistance sensor (FSRS) with functional macrostructure and modified microstructure. Comprehensively considering the environmental protection of dispersion solvent and the cost of surfactants, a stable dispersion of graphene was established in an ultrasound-aided ball milling process, where absolute ethanol was selected as the solvent and sodium dodecyl sulfonate (SDS) as the surfactant. The printed pattern of graphene-filled conductive silicon rubber (CSR) was optimized and embedded-printed as the conductive sensitive material (CSM), in which the FSRS with a spiral-patterned CSM was chosen for its high sensitivity. Micropores with an optimized interspacing of 10 mm were further introduced into the spiral CSM to significantly improve the sensitivity (GF=51±4) of the fabricated FSRS at a considerable working strain (20~30%) and long-life working duration (>104 cycles). The FRSR was sensitive enough to capture various motions of single and multi-joints and identify the rhythm of played music, which exhibited its potential application as a wearable flexible sensor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gao, Yan, Yujiang Zhai, Guantao Wang, Fu Liu, Haibin Duan, Xilun Ding y Sida Luo. "3D‐Laminated Graphene with Combined Laser Irradiation and Resin Infiltration toward Designable Macrostructure and Multifunction". Advanced Science, 24 de marzo de 2022, 2200362. http://dx.doi.org/10.1002/advs.202200362.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Feng, Xianlu y Dezhi Sun. "Enhanced Naproxen Adsorption by a Novel Β-Cyclodextrin Immobilized the Three-Dimensional Macrostructure of Reduced Graphene Oxide and Multiwall Carbon Nanotubes". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4035554.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía