Tesis sobre el tema "Graph Pooling and Convolution"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 21 mejores tesis para su investigación sobre el tema "Graph Pooling and Convolution".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.
Texto completoMed utvecklingen av grafneurala nätverk har detta nya neurala nätverk tillämpats i olika område. Ett av de svåra problemen för forskare inom detta område är hur man väljer en lämplig poolningsmetod för en specifik forskningsuppgift från en mängd befintliga poolningsmetoder. I den här arbetet, baserat på de befintliga vanliga grafpoolingsmetoderna, utvecklar vi ett riktmärke för neuralt nätverk ram som kan användas till olika diagram pooling metoders jämförelse. Genom att använda ramverket jämför vi fyra allmängiltig diagram pooling metod och utforska deras egenskaper. Dessutom utvidgar vi två metoder för att förklara beslut om neuralt nätverk från convolution neurala nätverk till diagram neurala nätverk och jämföra dem med befintliga GNNExplainer. Vi kör experiment av grafisk klassificering uppgifter under benchmarkingramverk och hittade olika egenskaper av olika diagram pooling metoder. Dessutom verifierar vi korrekthet i dessa förklarningsmetoder som vi utvecklade och mäter överenskommelserna mellan dem. Till slut, vi försöker utforska egenskaper av olika metoder för att förklara neuralt nätverks beslut och deras betydelse för att välja pooling metoder i grafisk neuralt nätverk.
Mazari, Ahmed. "Apprentissage profond pour la reconnaissance d’actions en vidéos". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS171.
Texto completoNowadays, video contents are ubiquitous through the popular use of internet and smartphones, as well as social media. Many daily life applications such as video surveillance and video captioning, as well as scene understanding require sophisticated technologies to process video data. It becomes of crucial importance to develop automatic means to analyze and to interpret the large amount of available video data. In this thesis, we are interested in video action recognition, i.e. the problem of assigning action categories to sequences of videos. This can be seen as a key ingredient to build the next generation of vision systems. It is tackled with AI frameworks, mainly with ML and Deep ConvNets. Current ConvNets are increasingly deeper, data-hungrier and this makes their success tributary of the abundance of labeled training data. ConvNets also rely on (max or average) pooling which reduces dimensionality of output layers (and hence attenuates their sensitivity to the availability of labeled data); however, this process may dilute the information of upstream convolutional layers and thereby affect the discrimination power of the trained video representations, especially when the learned action categories are fine-grained
GIACOPELLI, Giuseppe. "An Original Convolution Model to analyze Graph Network Distribution Features". Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/553177.
Texto completoZulfiqar, Omer. "Detecting Public Transit Service Disruptions Using Social Media Mining and Graph Convolution". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103745.
Texto completoMaster of Science
Millions of people worldwide rely on public transit networks for their daily commutes and day to day movements. With the growth in the number of people using the service, there has been an increase in the number of daily passengers affected by service disruptions. This thesis and research involves proposing and developing three different approaches to help aid in the timely detection of these disruptions. In this work we have developed a pure data mining approach along with two deep learning models using neural networks and live data from Twitter to identify these disruptions. The data mining approach uses a set of dirsuption related input keywords to identify similar keywords within the live Twitter data. By collecting historical data we were able to create deep learning models that represent the vocabulary from the disruptions related Tweets in the form of a graph. A graph is a collection of data values where the data points are connected to one another based on their relationships. A longer chain of connection between two words defines a weak relationship, a shorter chain defines a stronger relationship. In our graph, words with similar contextual meanings are connected to each other over shorter distances, compared to words with different meanings. At the end we use a neural network as a classifier to scan this graph to learn the semantic relationships within our data. Afterwards, this learned information can be used to accurately classify the disruption related Tweets within a pool of random Tweets. Once all the proposed approaches have been developed, a benchmark evaluation is performed against other existing text classification techniques, to justify the effectiveness of the approaches. The final results indicate that the proposed graph based models achieved a higher accuracy, compared to the data mining model, and also outperformed all the other baseline models. Our Tweet-Level GCN had the highest accuracy of 89.9%.
Pappone, Francesco. "Graph neural networks: theory and applications". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.
Texto completoVialatte, Jean-Charles. "Convolution et apprentissage profond sur graphes". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0118/document.
Texto completoConvolutional neural networks have proven to be the deep learning model that performs best on regularly structured datasets like images or sounds. However, they cannot be applied on datasets with an irregular structure (e.g. sensor networks, citation networks, MRIs). In this thesis, we develop an algebraic theory of convolutions on irregular domains. We construct a family of convolutions that are based on group actions (or, more generally, groupoid actions) that acts on the vertex domain and that have properties that depend on the edges. With the help of these convolutions, we propose extensions of convolutional neural netowrks to graph domains. Our researches lead us to propose a generic formulation of the propagation between layers, that we call the neural contraction. From this formulation, we derive many novel neural network models that can be applied on irregular domains. Through benchmarks and experiments, we show that they attain state-of-the-art performances, and beat them in some cases
Bereczki, Márk. "Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Texto completoRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
Lamma, Tommaso. "A mathematical introduction to geometric deep learning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23886/.
Texto completoKarimi, Ahmad Maroof. "DATA SCIENCE AND MACHINE LEARNING TO PREDICT DEGRADATION AND POWER OF PHOTOVOLTAIC SYSTEMS: CONVOLUTIONAL AND SPATIOTEMPORAL GRAPH NEURAL NETWORK". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1601082841477951.
Texto completoMartineau, Maxime. "Deep learning onto graph space : application to image-based insect recognition". Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4024.
Texto completoThe goal of this thesis is to investigate insect recognition as an image-based pattern recognition problem. Although this problem has been extensively studied along the previous three decades, an element is to the best of our knowledge still to be experimented as of 2017: deep approaches. Therefore, a contribution is about determining to what extent deep convolutional neural networks (CNNs) can be applied to image-based insect recognition. Graph-based representations and methods have also been tested. Two attempts are presented: The former consists in designing a graph-perceptron classifier and the latter graph-based work in this thesis is on defining convolution on graphs to build graph convolutional neural networks. The last chapter of the thesis deals with applying most of the aforementioned methods to insect image recognition problems. Two datasets are proposed. The first one consists of lab-based images with constant background. The second one is generated by taking a ImageNet subset. This set is composed of field-based images. CNNs with transfer learning are the most successful method applied on these datasets
Simonovsky, Martin. "Deep learning on attributed graphs". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1133/document.
Texto completoGraph is a powerful concept for representation of relations between pairs of entities. Data with underlying graph structure can be found across many disciplines, describing chemical compounds, surfaces of three-dimensional models, social interactions, or knowledge bases, to name only a few. There is a natural desire for understanding such data better. Deep learning (DL) has achieved significant breakthroughs in a variety of machine learning tasks in recent years, especially where data is structured on a grid, such as in text, speech, or image understanding. However, surprisingly little has been done to explore the applicability of DL on graph-structured data directly.The goal of this thesis is to investigate architectures for DL on graphs and study how to transfer, adapt or generalize concepts working well on sequential and image data to this domain. We concentrate on two important primitives: embedding graphs or their nodes into a continuous vector space representation (encoding) and, conversely, generating graphs from such vectors back (decoding). To that end, we make the following contributions.First, we introduce Edge-Conditioned Convolutions (ECC), a convolution-like operation on graphs performed in the spatial domain where filters are dynamically generated based on edge attributes. The method is used to encode graphs with arbitrary and varying structure.Second, we propose SuperPoint Graph, an intermediate point cloud representation with rich edge attributes encoding the contextual relationship between object parts. Based on this representation, ECC is employed to segment large-scale point clouds without major sacrifice in fine details.Third, we present GraphVAE, a graph generator allowing to decode graphs with variable but upper-bounded number of nodes making use of approximate graph matching for aligning the predictions of an autoencoder with its inputs. The method is applied to the task of molecule generation
Jedlička, František. "Rozpoznání květin v obraze". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-376895.
Texto completoŠtarha, Dominik. "Meření podobnosti obrazů s pomocí hlubokého učení". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377018.
Texto completoTa, Anh Son. "Programmation DC et DCA pour la résolution de certaines classes des problèmes dans les systèmes de transport et de communication". Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00776219.
Texto completoHuang, Yu-Pei y 黃喻培. "Pooling Designs, Distance-regular Graphs, Spectral Graph Theory and Their Links". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/58431847967392046668.
Texto completo國立交通大學
應用數學系所
101
This dissertation contains three quite different subjects: posets, distance-regular graphs, and spectral graph theory. Motivated by the constructions of pooling designs, we study these three subjects through interesting links among them. A pooling space is a ranked poset P such that the subposet w+ induced by the elements above w is atomic for each element w of P. Pooling spaces were introduced in [Discrete Mathematics 282:163-169, 2004] for the purpose of giving a uniform way to construct pooling designs, which have applications to the screening of DNA sequences. We find that a geometric lattice, a well-studied structure in literature, is also a pooling space. This provides us many classes of pooling designs, some old and some new. Following the same concept, the poset constructed from a distance-regular graph with its distance-regular subgraphs is also a pooling space. For a special class of distance-regular graphs, we show the existence of their distance-regular subgraphs with any given diameter. The nonexistence of a class of distance-regular graphs follows from the line of study. Distance-regular graphs appear often in some extremal class of combinatorial or linear algebraic inequalities. As we can see from the inequality of arithmetic and geometric means of a sequence of positive real numbers, the equality occurs when the sequence has some regular patterns. We consider the maximum eigenvalues of the adjacency matrices of graphs and present sharp upper bounds of them. The graphs which attain the bounds also satisfy a special kind of regularity.
LU, CHENG-HUO y 呂政和. "Error-correcting Pooling Designs Constructed From Matchings of a Complete Graph". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/a5f225.
Texto completo國立高雄大學
應用數學系碩博士班
107
The model of classical group testing is: given n items, at most d of them are defective, we want to find out all of the defectives using the minimum number of tests that are applied on a subset of these items. In a nonadaptive algorithm, also called a pooling design, one must decide all tests before any testing occurs. Pooling designs play an important role in the field of group testing, there are many applications such as blood testing, quality controlling and DNA screening. Error-correcting pooling design uses (d; z)-disjunct matrices. A binary matrix M is called (d; z)-disjunct if given any d + 1 columns of M with one designated, there are z rows intersecting the designated column and none of the other d columns. A (d; z)-disjunct matrix is called completely (d; z)-disjunct if it is not (d; z1)-disjunct whenever z1 > z. Let M(m,m,d) be the 01-matrix whose rows are indexed by all d-matchings on K2m and whose columns are indexed by all perfect matchings on K2m. M(m,m,d) has a 1 in row i and column j if and only if the i-th d-matching is contained in the j-th m-matching. In this thesis, we study a pooling design M(m,m,d) and find its corresponding error-tolerance capabilities. Our results are divided into three parts: when m-d = 1 (resp. m-d = 2), M(m,m,d) is completely (d; z)-disjunct with z = m (resp. z =("m" ¦"2" )-d); when m≥d+3 and 1 ≤ d ≤ ⌊"m" /"2" ⌋, M(m,m,d) is completely (d; "2" ^"d" )-disjunct; when m≥d+3 and ⌊"m" /"2" ⌋< d < m, M(m,m,d) is completely (d; z)-disjunct where z = O("4" ^"(2d−m)/3" ∙"3" ^"m−d" ).
Vijayan, Raghavendran. "Forecasting retweet count during elections using graph convolution neural networks". Thesis, 2018. https://doi.org/10.7912/C2JM2C.
Texto completoLu, Zhibin. "VGCN-BERT : augmenting BERT with graph embedding for text classification : application to offensive language detection". Thesis, 2020. http://hdl.handle.net/1866/24325.
Texto completoHate speech is a serious problem on social media. In this thesis, we investigate the problem of automatic detection of hate speech on social media. We cast it as a text classification problem. With the development of deep learning, text classification has made great progress in recent years. In particular, models using attention mechanism such as BERT have shown great capability of capturing the local contextual information within a sentence or document. Although local connections between words in the sentence can be captured, their ability of capturing certain application-dependent global information and long-range semantic dependency is limited. Recently, a new type of neural network, called the Graph Convolutional Network (GCN), has attracted much attention. It provides an effective mechanism to take into account the global information via the convolutional operation on a global graph and has achieved good results in many tasks including text classification. In this thesis, we propose a method that can combine both advantages of BERT model, which is excellent at exploiting the local information from a text, and the GCN model, which provides the application-dependent global language information. However, the traditional GCN is a transductive learning model, which performs a convolutional operation on a graph composed of task entities (i.e. documents graph) and cannot be applied directly to a new document. In this thesis, we first propose a novel Vocabulary GCN model (VGCN), which transforms the document-level convolution of the traditional GCN model to word-level convolution using a word graph created from word co-occurrences. In this way, we change the training method of GCN, from the transductive learning mode to the inductive learning mode, that can be applied to new documents. Secondly, we propose an Interactive-VGCN-BERT model that combines our VGCN model with BERT. In this model, local information including dependencies between words in a sentence, can be captured by BERT, while the global information reflecting the relations between words in a language (e.g. related words) can be captured by VGCN. In addition, local information and global information can interact through different layers of BERT, allowing them to influence mutually and to build together a final representation for classification. In so doing, the global language information can help distinguish ambiguous words or understand unclear expressions, thereby improving the performance of text classification tasks. To evaluate the effectiveness of our Interactive-VGCN-BERT model, we conduct experiments on several datasets of different types -- hate language detection, as well as movie review and grammaticality, and compare them with several state-of-the-art baseline models. Experimental results show that our Interactive-VGCN-BERT outperforms all other models such as Vanilla-VGCN-BERT, BERT, Bi-LSTM, MLP, GCN, and so on. In particular, we have found that VGCN can indeed help understand a text when it is integrated with BERT, confirming our intuition to combine the two mechanisms.
"Generalized Statistical Tolerance Analysis and Three Dimensional Model for Manufacturing Tolerance Transfer in Manufacturing Process Planning". Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9125.
Texto completoDissertation/Thesis
Ph.D. Mechanical Engineering 2011
Węgrzycki, Karol. "Provably optimal dynamic programming". Doctoral thesis, 2021. https://depotuw.ceon.pl/handle/item/3869.
Texto completoW rozprawie przedstawiamy nowe techniki analizy algorytmów opartych na programowaniu dynamicznym. Używamy ich do rozwiązywania problemów na grafach i przyśpieszeniu wybranych algorytmów aproksymacyjnych. Zaproponowane przez nas metody pozwalają na usprawnienie obecnie znanych algorytmów dla znajdywania najkrótszych cykli, wyroczni odległości, problemów aproksymacyjnych związanych z problemem plecakowym i innych. W rozprawie proponujemy także klasy równoważności dla wybranych problemów, które mają efektywne algorytmy oparte na programowaniu dynamicznym. W szczególności: • (min, +)-konwolucji i problemu plecakowego, • (min, max)-konwolucji i silnie wielomianowej aproksymacji dla (min, +)-konwolucji, • (min, max)-produktu i silnie wielomianowej aproksymacji dla znajdywania najkrótszych ścieżek w grafie.
Aghaebrahimian, Ahmad. "Hybridní hluboké metody pro automatické odpovídání na otázky". Doctoral thesis, 2019. http://www.nusl.cz/ntk/nusl-393809.
Texto completo