Literatura académica sobre el tema "Graph dynamics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Graph dynamics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Graph dynamics"
Huang, Xueqin, Xianqiang Zhu, Xiang Xu, Qianzhen Zhang y Ailin Liang. "Parallel Learning of Dynamics in Complex Systems". Systems 10, n.º 6 (15 de diciembre de 2022): 259. http://dx.doi.org/10.3390/systems10060259.
Texto completoLi, Jintang, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu y Changhua Meng. "Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8588–96. http://dx.doi.org/10.1609/aaai.v37i7.26034.
Texto completoZhang, Lei, Zhiqian Chen, Chang-Tien Lu y Liang Zhao. "From “Dynamics on Graphs” to “Dynamics of Graphs”: An Adaptive Echo-State Network Solution (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junio de 2022): 13111–12. http://dx.doi.org/10.1609/aaai.v36i11.21692.
Texto completoAhmed Mouhamadou WADE. "Tight bounds on exploration of constantly connected cacti-paths". World Journal of Advanced Research and Reviews 12, n.º 1 (30 de octubre de 2021): 355–61. http://dx.doi.org/10.30574/wjarr.2021.12.1.0534.
Texto completoDi Ianni, Miriam. "Game of Life-like Opinion Dynamics: Generalizing the Underpopulation Rule". AppliedMath 3, n.º 1 (28 de diciembre de 2022): 10–36. http://dx.doi.org/10.3390/appliedmath3010002.
Texto completoMouhamadou Wade, Ahmed. "EXPLORATION WITH RETURN OF HIGHLY DYNAMIC NETWORKS". International Journal of Advanced Research 9, n.º 10 (31 de octubre de 2021): 315–19. http://dx.doi.org/10.21474/ijar01/13550.
Texto completoChen, Haiyan y Fuji Zhang. "Spectral Dynamics of Graph Sequences Generated by Subdivision and Triangle Extension". Electronic Journal of Linear Algebra 32 (6 de febrero de 2017): 454–63. http://dx.doi.org/10.13001/1081-3810.3583.
Texto completoChen, Lanlan, Kai Wu, Jian Lou y Jing Liu. "Signed Graph Neural Ordinary Differential Equation for Modeling Continuous-Time Dynamics". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de marzo de 2024): 8292–301. http://dx.doi.org/10.1609/aaai.v38i8.28670.
Texto completoFahrenthold, E. P. y J. D. Wargo. "Lagrangian Bond Graphs for Solid Continuum Dynamics Modeling". Journal of Dynamic Systems, Measurement, and Control 116, n.º 2 (1 de junio de 1994): 178–92. http://dx.doi.org/10.1115/1.2899209.
Texto completoChen, Libin, Luyao Wang, Chengyi Zeng, Hongfu Liu y Jing Chen. "DHGEEP: A Dynamic Heterogeneous Graph-Embedding Method for Evolutionary Prediction". Mathematics 10, n.º 22 (9 de noviembre de 2022): 4193. http://dx.doi.org/10.3390/math10224193.
Texto completoTesis sobre el tema "Graph dynamics"
Ribeiro, Andre Figueiredo. "Graph dynamics : learning and representation". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34184.
Texto completoIncludes bibliographical references (p. 58-60).
Graphs are often used in artificial intelligence as means for symbolic knowledge representation. A graph is nothing more than a collection of symbols connected to each other in some fashion. For example, in computer vision a graph with five nodes and some edges can represent a table - where nodes correspond to particular shape descriptors for legs and a top, and edges to particular spatial relations. As a framework for representation, graphs invite us to simplify and view the world as objects of pure structure whose properties are fixed in time, while the phenomena they are supposed to model are actually often changing. A node alone cannot represent a table leg, for example, because a table leg is not one structure (it can have many different shapes, colors, or it can be seen in many different settings, lighting conditions, etc.) Theories of knowledge representation have in general concentrated on the stability of symbols - on the fact that people often use properties that remain unchanged across different contexts to represent an object (in vision, these properties are called invariants). However, on closer inspection, objects are variable as well as stable. How are we to understand such problems? How is that assembling a large collection of changing components into a system results in something that is an altogether stable collection of parts?
(cont.) The work here presents one approach that we came to encompass by the phrase "graph dynamics". Roughly speaking, dynamical systems are systems with states that evolve over time according to some lawful "motion". In graph dynamics, states are graphical structures, corresponding to different hypothesis for representation, and motion is the correction or repair of an antecedent structure. The adapted structure is an end product on a path of test and repair. In this way, a graph is not an exact record of the environment but a malleable construct that is gradually tightened to fit the form it is to reproduce. In particular, we explore the concept of attractors for the graph dynamical system. In dynamical systems theory, attractor states are states into which the system settles with the passage of time, and in graph dynamics they correspond to graphical states with many repairs (states that can cope with many different contingencies). In parallel with introducing the basic mathematical framework for graph dynamics, we define a game for its control, its attractor states and a method to find the attractors. From these insights, we work out two new algorithms, one for Bayesian network discovery and one for active learning, which in combination we use to undertake the object recognition problem in computer vision. To conclude, we report competitive results in standard and custom-made object recognition datasets.
by Andre Figueiredo Ribeiro.
S.M.
Kuhlman, Christopher James. "Generalizations of Threshold Graph Dynamical Systems". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76765.
Texto completoMaster of Science
Arnlind, Joakim. "Graph Techniques for Matrix Equations and Eigenvalue Dynamics". Doctoral thesis, KTH, Matematik (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4608.
Texto completoQC 20100630
Ayazifar, Babak 1967. "Graph spectra and modal dynamics of oscillatory networks". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16913.
Texto completoIncludes bibliographical references (leaves 186-191).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Our research focuses on developing design-oriented analytical tools that enable us to better understand how a network comprising dynamic and static elements behaves when it is set in oscillatory motion, and how the interconnection topology relates to the spectral properties of the system. Such oscillatory networks are ubiquitous, extending from miniature electronic circuits to large-scale power networks. We tap into the rich mathematical literature on graph spectra, and develop theoretical extensions applicable to networks containing nodes that have finite nonnegative weights-including nodes of zero weight, which occur naturally in the context of power networks. We develop new spectral graph-theoretic results spawned by our engineering interests, including generalizations (to node-weighted graphs) of various structure-based eigenvalue bounds. The central results of this thesis concern the phenomenon of dynamic coherency, in which clusters of vertices move in unison relative to each other. Our research exposes the relation between coherency and network structure and parameters. We study both approximate and exact dynamic coherency. Our new understanding of coherency leads to a number of results. We expose a conceptual link between theoretical coherency and the confinement of an oscillatory mode to a node cluster. We show how the eigenvalues of a coherent graph relate to those of its constituent clusters.
(cont.) We use our eigenvalue expressions to devise a novel graph design algorithm; given a set of vertices (of finite positive weight) and a desired set of eigenvalues, we construct a graph that meets the specifications. Our novel graph design algorithm has two interesting corollaries: the graph eigenvectors have regions of support that monotonically decrease toward faster modes, and we can construct graphs that exactly meet our generalized eigenvalue bounds. It is our hope that the results of this thesis will contribute to a better understanding of the links between structure and dynamics in oscillatory networks.
by Babak Ayazifar.
Ph.D.
Homer, Martin Edward. "Bifurcations and dynamics of piecewise smooth dynamical systems of arbitrary dimension". Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299271.
Texto completoLee, Daryl Hsu Ann. "Toward large-graph comparison measures to understand Internet topology dynamics". Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37658.
Texto completoBy measuring network changes, we can get a better understanding of a network. Extending this to the Internet, we are able to understand the constantly occuring changes on an international scale. In this research, we propose a measure that conveys the relative magnitude of the change between two networks (i.e., Internet topology). The measure is normalised and intuitively gives an indication of whether the change is small or large. We start off by applying this measure to standard common graphs, as well as random graphs. These graphs were first simulated and the measurements taken; results were then proved theoretically. These corresponded to the simulation results, thus demonstrating correctness. For case studies, we compared actual implemented networks with that which is inferred by probes. This comparison was done to study how accurate the probes were in discovering actual network topology. Finally, we conducted real-world experiments by applying the measurements to certain segments of the Internet. We observed that the measurements indeed do pick up events which significantly influenced structural changes to the Internet.
Giscard, Pierre-Louis. "A graph theoretic approach to matrix functions and quantum dynamics". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ceef15b0-eed2-4615-a9f2-f9efbef470c9.
Texto completoAyala-Hoffmann, Jose. "Global behavior of graph dynamics with applications to Markov chains". [Ames, Iowa : Iowa State University], 2008.
Buscar texto completoMagkakis, Andreas Gkompel. "Counting, modular counting and graph homomorphisms". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0.
Texto completoBudai, Daniel y David Jallo. "The Market Graph : A study of its characteristics, structure & dynamics". Thesis, KTH, Matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103094.
Texto completoI denna uppsats har vi tittat på tre olika marknadsgrafer; en enbart baserad på avkastning, en baserad på avkastning med likvidviktade noder och slutligen en baserad på volymkorrelationer. Studien är gjord på två olika marknader; den svenska och den amerikanska aktiemarknaden. Vi vill introducera grafteori som ett verktyg för att representera aktiemarknaden och visa att man bättre kan förstå aktiemarknadens strukturerade egenskaper och dynamik genom att studera marknadsgrafen. Vi fann många tecken på en ökad globalisering genom att titta på klusterkoefficienten och korrelationsfördelningen. Marknadsgrafens struktur är så att den lokaliserar specifika sektorer när korrelationstaket ökas och olika sektorer är funna för de två olika marknaderna. För låga korrelationstak fann vi grupper av oberoende aktier som kan användas som diversifierade portföljer. Vidare, avslöjar dynamiken att det är möjligt att använda daglig absolut förändring i bågdensiteten som en indikator för när marknaden är på väg att gå ner. Detta kan vara ett intressant ämne för vidare studier. Vi hade hoppats på att erhålla ytterligare resultat genom att titta på volymkorrelationer men det visade sig att så inte var fallet. Trots det tycker vi att det skulle vara intressant att djupare studera volymbaserade marknadsgrafer.
Libros sobre el tema "Graph dynamics"
Prisner, E. Graph dynamics. New York: Longman, 1995.
Buscar texto completoPrisner, E. Graph dynamics. Harlow, Essex: Longman, 1995.
Buscar texto completoRandom graph dynamics. Cambridge: Cambridge University Press, 2007.
Buscar texto completoŚwider, Jerzy. Macierzowe grafy hybrydowe w opisie drgających, złożonych układów mechanicznych. Gliwice: Wydawn. Politechniki Śląskiej, 1991.
Buscar texto completoBrown, Forbes T. Engineering system dynamics: A unified graph-centered approach. 2a ed. Boca Raton, FL: CRC/Taylor & Francis, 2006.
Buscar texto completoEngineering system dynamics: A unified graph-centered approach. New York: Marcel Dekker, 2001.
Buscar texto completoHorst, Bunke, ed. A graph-theoretic approach to enterprise network dynamics. Boston: Birkhäuser, 2007.
Buscar texto completoMariusz, Urbaʹnski, ed. Graph directed Markov systems: Geometry and dynamics of limit sets. Cambridge: Cambridge University Press, 2003.
Buscar texto completoWatts, Duncan J. Small worlds: The dynamics of networks between order and randomness. Princeton, N.J: Princeton University Press, 1999.
Buscar texto completoOsipenko, Georgiy. Computer-oriented methods of dynamic systems. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1912470.
Texto completoCapítulos de libros sobre el tema "Graph dynamics"
Arrighi, Pablo y Gilles Dowek. "Causal Graph Dynamics". En Automata, Languages, and Programming, 54–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31585-5_9.
Texto completoCittadini, Luca, Tiziana Refice, Alessio Campisano, Giuseppe Di Battista y Claudio Sasso. "Policy-Aware Visualization of Internet Dynamics". En Graph Drawing, 435–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_43.
Texto completoJain, Abhinandan. "Graph Theory Connections". En Robot and Multibody Dynamics, 135–57. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7267-5_8.
Texto completoFagnani, Fabio y Paolo Frasca. "Graph Theory". En Introduction to Averaging Dynamics over Networks, 1–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68022-4_1.
Texto completoKing, R. B. "Polyhedral Dynamics". En Graph Theoretical Approaches to Chemical Reactivity, 109–35. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1202-4_4.
Texto completoArrighi, Pablo, Simon Martiel y Simon Perdrix. "Reversible Causal Graph Dynamics". En Reversible Computation, 73–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40578-0_5.
Texto completovan Benthem, Johan y Fenrong Liu. "Graph Games and Logic Design". En Knowledge, Proof and Dynamics, 125–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2221-5_7.
Texto completoSeeler, Karl A. "Introduction to the Linear Graph Method, Step Responses, and Superposition". En System Dynamics, 117–93. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9152-1_3.
Texto completoDell’Antonio, Gianfausto y Alessandro Michelangeli. "Dynamics on a Graph as the Limit of the Dynamics on a “Fat Graph”". En Mathematical Technology of Networks, 49–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16619-3_5.
Texto completoJacob, Abraham y P. B. Ramkumar. "Intuitionistic Fuzzy Graph Morphological Topology". En Topological Dynamics and Topological Data Analysis, 255–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3_21.
Texto completoActas de conferencias sobre el tema "Graph dynamics"
Belim, Sergey V. y Anton N. Mironenko. "Using the graph-theoretic approach to solving the Role Mining problem". En 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601487.
Texto completoCai, Borui, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li y Jianxin Li. "Temporal Knowledge Graph Completion: A Survey". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/734.
Texto completoLesfari, Hicham, Frédéric Giroire y Stéphane Pérennes. "Biased Majority Opinion Dynamics: Exploiting Graph k-domination". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/54.
Texto completoMancini, Felice, Daniel Grande y Pradeep Radhakrishnan. "An Automated Virtual Lab for Bond Graph Based Dynamics Modeling Using Graph Grammars and Tree Search". En ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66110.
Texto completoGrande, Daniel, Felice Mancini y Pradeep Radhakrishnan. "An Automated Graph Grammar Based Tool to Automatically Generate System Bond Graphs for Dynamic Analysis". En ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59941.
Texto completoYin, Cheng, Shengqi Jian, Md Hassan Faghih, Md Toufiqul Islam y Luc Rolland. "Bond Graph Modeling and Simulating of 3 RPR Planar Parallel Manipulator". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38601.
Texto completoPopov, Anton I., Igor Y. Popov, Dmitri S. Nikiforov y Irina V. Blinova. "Time-dependent metric graph: Wave dynamics". En CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114299.
Texto completoBurch, Michael, Günter Wallner, Huub van de Wetering, Freek Rooks y Olof Morra. "Visual Analysis of Graph Algorithm Dynamics". En VINCI 2021: The 14th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3481549.3481550.
Texto completoWu, Zhaohong, Matthew I. Campbell y Benito R. Fernandez. "A Design Representation to Support the Automatic Dynamic Evaluation of Electromechanical Designs". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81799.
Texto completoSharma, Kartik, Rakshit Trivedi, Rohit Sridhar y Srijan Kumar. "Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models". En KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3580305.3599517.
Texto completoInformes sobre el tema "Graph dynamics"
Djidjev, Hristo Nikolov, Georg Hahn, Susan M. Mniszewski, Christian Francisco Negre, Anders Mauritz Niklasson y Vivek Sardeshmukh. Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics. Office of Scientific and Technical Information (OSTI), octubre de 2016. http://dx.doi.org/10.2172/1330079.
Texto completoThulasidasan, Sunil. The Graph Laplacian and the Dynamics of Complex Networks. Office of Scientific and Technical Information (OSTI), junio de 2012. http://dx.doi.org/10.2172/1043504.
Texto completoChew, Geoffrey F. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'. Office of Scientific and Technical Information (OSTI), mayo de 2003. http://dx.doi.org/10.2172/813522.
Texto completoKularatne, Dhanushka N., Subhrajit Bhattacharya y M. Ani Hsieh. Computing Energy Optimal Paths in Time-Varying Flows. Drexel University, 2016. http://dx.doi.org/10.17918/d8b66v.
Texto completoMesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2012. http://dx.doi.org/10.21236/ada567125.
Texto completoSoloviev, Vladimir, Victoria Solovieva, Anna Tuliakova, Alexey Hostryk y Lukáš Pichl. Complex networks theory and precursors of financial crashes. [б. в.], octubre de 2020. http://dx.doi.org/10.31812/123456789/4119.
Texto completoGallagher, B. y T. Eliassi-Rad. API Requirements for Dynamic Graph Prediction. Office of Scientific and Technical Information (OSTI), octubre de 2006. http://dx.doi.org/10.2172/1036864.
Texto completoKhanna, S., R. Motwani y R. H. Wilson. On certificates and lookahead in dynamic graph problems. Office of Scientific and Technical Information (OSTI), mayo de 1995. http://dx.doi.org/10.2172/93769.
Texto completoBhatele, Abhinav, Sebastien Fourestier, Harshitha Menon, Laxmikant V. Kale y Francois Pellegrini. Applying graph partitioning methods in measurement-based dynamic load balancing. Office of Scientific and Technical Information (OSTI), septiembre de 2011. http://dx.doi.org/10.2172/1114706.
Texto completoLabute, M. y M. Dombroski. Review of Graph Databases for Big Data Dynamic Entity Scoring. Office of Scientific and Technical Information (OSTI), mayo de 2014. http://dx.doi.org/10.2172/1132027.
Texto completo