Literatura académica sobre el tema "Graph-based input representation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Graph-based input representation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Graph-based input representation"
Lu, Fangbo, Zhihao Zhang y Changsheng Shui. "Online trajectory anomaly detection model based on graph neural networks and variational autoencoder". Journal of Physics: Conference Series 2816, n.º 1 (1 de agosto de 2024): 012006. http://dx.doi.org/10.1088/1742-6596/2816/1/012006.
Texto completoYu, Xingtong, Zemin Liu, Yuan Fang y Xinming Zhang. "Learning to Count Isomorphisms with Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 4 (26 de junio de 2023): 4845–53. http://dx.doi.org/10.1609/aaai.v37i4.25610.
Texto completoBauer, Daniel. "Understanding Descriptions of Visual Scenes Using Graph Grammars". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (29 de junio de 2013): 1656–57. http://dx.doi.org/10.1609/aaai.v27i1.8498.
Texto completoWu, Xinyue y Huilin Chen. "Augmented Feature Diffusion on Sparsely Sampled Subgraph". Electronics 13, n.º 16 (15 de agosto de 2024): 3249. http://dx.doi.org/10.3390/electronics13163249.
Texto completoCooray, Thilini y Ngai-Man Cheung. "Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junio de 2022): 6420–28. http://dx.doi.org/10.1609/aaai.v36i6.20593.
Texto completoGildea, Daniel, Giorgio Satta y Xiaochang Peng. "Ordered Tree Decomposition for HRG Rule Extraction". Computational Linguistics 45, n.º 2 (junio de 2019): 339–79. http://dx.doi.org/10.1162/coli_a_00350.
Texto completoMiao, Fengyu, Xiuzhuang Zhou, Shungen Xiao y Shiliang Zhang. "A Graph Similarity Algorithm Based on Graph Partitioning and Attention Mechanism". Electronics 13, n.º 19 (25 de septiembre de 2024): 3794. http://dx.doi.org/10.3390/electronics13193794.
Texto completoCoşkun, Kemal Çağlar, Muhammad Hassan y Rolf Drechsler. "Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits". Chips 1, n.º 1 (13 de junio de 2022): 54–71. http://dx.doi.org/10.3390/chips1010006.
Texto completoZhang, Dong, Suzhong Wei, Shoushan Li, Hanqian Wu, Qiaoming Zhu y Guodong Zhou. "Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 16 (18 de mayo de 2021): 14347–55. http://dx.doi.org/10.1609/aaai.v35i16.17687.
Texto completoRen, Min, Yunlong Wang, Zhenan Sun y Tieniu Tan. "Dynamic Graph Representation for Occlusion Handling in Biometrics". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11940–47. http://dx.doi.org/10.1609/aaai.v34i07.6869.
Texto completoTesis sobre el tema "Graph-based input representation"
Agarwal, Navneet. "Autοmated depressiοn level estimatiοn : a study οn discοurse structure, input representatiοn and clinical reliability". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC215.
Texto completoGiven the severe and widespread impact of depression, significant research initiatives have been undertaken to define systems for automated depression assessment. The research presented in this dissertation revolves around the following questions that remain relatively unexplored despite their relevance within automated depression assessment domain; (1) the role of discourse structure in mental health analysis, (2) the relevance of input representation towards the predictive abilities of neural network models, and (3) the importance of domain expertise in automated depression detection.The dyadic nature of patient-therapist interviews ensures the presence of a complex underlying structure within the discourse. Within this thesis, we first establish the importance of therapist questions within the neural network model's input, before showing that a sequential combination of patient and therapist input is a sub-optimal strategy. Consequently, Multi-view architectures are proposed as a means of incorporating the discourse structure within the learning process of neural networks. Experimental results with two different text encodings show the advantages of the proposed multi-view architectures, validating the relevance of retaining discourse structure within the model's training process.Having established the need to retain the discourse structure within the learning process, we further explore graph based text representations. The research conducted in this context highlights the impact of input representations not only in defining the learning abilities of the model, but also in understanding their predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are used to exemplify the ability of graphical representations to provide varying perspectives of the same input, highlighting information that can not only improve the predictive performance of the models but can also be relevant for medical professionals. Multi-view concept is also incorporated within the two graph structures to further highlight the difference in the perspectives of the patient and the therapist within the same interview. Furthermore, it is shown that visualization of the proposed graph structures can provide valuable insights indicative of subtle changes in patient and therapist's behavior, hinting towards the mental state of the patient.Finally, we highlight the lack of involvement of medical professionals within the context of automated depression detection based on clinical interviews. As part of this thesis, clinical annotations of the DAIC-WOZ dataset were performed to provide a resource for conducting interdisciplinary research in this field. Experiments are defined to study the integration of the clinical annotations within the neural network models applied to symptom-level prediction task within the automated depression detection domain. Furthermore, the proposed models are analyzed in the context of the clinical annotations to analogize their predictive process and psychological tendencies with those of medical professionals, a step towards establishing them as reliable clinical tools
Capítulos de libros sobre el tema "Graph-based input representation"
Jagan, Balaji, Ranjani Parthasarathi y Geetha T. V. "Graph-Based Abstractive Summarization". En Innovations, Developments, and Applications of Semantic Web and Information Systems, 236–61. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5042-6.ch009.
Texto completoKumar, P. Krishna y Harish G. Ramaswamy. "Graph Classification with GNNs: Optimisation, Representation & Inductive Bias". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240726.
Texto completoToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. "QSPR/QSAR Analyses by Means of the CORAL Software". En Pharmaceutical Sciences, 929–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch036.
Texto completoToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. "QSPR/QSAR Analyses by Means of the CORAL Software". En Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 560–85. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch015.
Texto completoZhang, Taolin, Dongyang Li, Qizhou Chen, Chengyu Wang, Longtao Huang, Hui Xue, Xiaofeng He y Jun Huang. "R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240755.
Texto completoYang, Zixuan, Xiao Wang, Yanhua Yu, Yuling Wang, Kangkang Lu, Zirui Guo, Xiting Qin, Yunshan Ma y Tat-Seng Chua. "Hop-based Heterogeneous Graph Transformer". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240759.
Texto completoOmerovic, Aida, Amela Karahasanovic y Ketil Stølen. "Uncertainty Handling in Weighted Dependency Trees". En Dependability and Computer Engineering, 381–416. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-747-0.ch016.
Texto completoActas de conferencias sobre el tema "Graph-based input representation"
Morris, Matthew, David J. Tena Cucala, Bernardo Cuenca Grau y Ian Horrocks. "Relational Graph Convolutional Networks Do Not Learn Sound Rules". En 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 897–908. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/84.
Texto completoGuo, Zhichun, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G. Iyer, Yihong Ma, Olaf Wiest et al. "Graph-based Molecular Representation Learning". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/744.
Texto completoJin, Ming, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou y Shirui Pan. "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/204.
Texto completoJin, Di, Luzhi Wang, Yizhen Zheng, Xiang Li, Fei Jiang, Wei Lin y Shirui Pan. "CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/292.
Texto completoGuan, Sheng, Hanchao Ma y Yinghui Wu. "RoboGNN: Robustifying Node Classification under Link Perturbation". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/420.
Texto completoAhmetaj, Shqiponja, Robert David, Magdalena Ortiz, Axel Polleres, Bojken Shehu y Mantas Šimkus. "Reasoning about Explanations for Non-validation in SHACL". En 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/2.
Texto completoLi, Zuchao, Xingyi Guo, Letian Peng, Lefei Zhang y Hai Zhao. "iRe2f: Rethinking Effective Refinement in Language Structure Prediction via Efficient Iterative Retrospecting and Reasoning". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/570.
Texto completoFan, Zhihao, Zhongyu Wei, Siyuan Wang, Ruize Wang, Zejun Li, Haijun Shan y Xuanjing Huang. "TCIC: Theme Concepts Learning Cross Language and Vision for Image Captioning". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/91.
Texto completoSun, Tien-Lung, Chuan-Jun Su, Richard J. Mayer y Richard A. Wysk. "Shape Similarity Assessment of Mechanical Parts Based on Solid Models". En ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0234.
Texto completoMiller, Michael G., James L. Mathieson, Joshua D. Summers y Gregory M. Mocko. "Representation: Structural Complexity of Assemblies to Create Neural Network Based Assembly Time Estimation Models". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71337.
Texto completo