Literatura académica sobre el tema "Grape berry development"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Grape berry development".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Grape berry development"

1

Diakou-Verdin, Paraskevi, Jean-Pierre Carde, Jean-Pierre Gaudillère, François Barrieu, Nathalie Ollat y Annick Moing. "Grape berry development : A review". OENO One 36, n.º 3 (30 de septiembre de 2002): 109. http://dx.doi.org/10.20870/oeno-one.2002.36.3.970.

Texto completo
Resumen
<p style="text-align: justify;">Grape berry development is reviewed with special focus on berry growth, structure, substances imported, organic acid and sugar metabolism. Berry growth is divided into two growth periods. Berry structure and ultra structure are adapted to sink function. Exocarp cells are characterized by intensive metabolic capacities, flesh cells by a storage role. Early growth is highly sensitive to internal and external parameters. Berry size is largely defined during the first growth period. After "véraison", the berry becomes a major storage sink. Many changes occur in berry metabolism and gene expression. Genomic researches are promising to elucidate the mechanisms of berry development.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bashir, Shafia y Nirmaljit Kaur. "The Biochemistry of Grape Berry Development". International Journal of Current Microbiology and Applied Sciences 7, n.º 2 (10 de febrero de 2018): 1692–99. http://dx.doi.org/10.20546/ijcmas.2018.702.204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Terrier, N., N. Issaly, F. Sauvage, A. Ageorges y C. Romieu. "ASPECTS OF GRAPE BERRY DEVELOPMENT BIOENERGETICS". Acta Horticulturae, n.º 526 (marzo de 2000): 331–38. http://dx.doi.org/10.17660/actahortic.2000.526.35.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Xie, Zhenqiang, Ziwen Su, Wenran Wang, Le Guan, Yunhe Bai, Xudong Zhu, Xicheng Wang, Haifeng Jia, Jinggui Fang y Chen Wang. "Characterization of VvSPL18 and Its Expression in Response to Exogenous Hormones during Grape Berry Development and Ripening". Cytogenetic and Genome Research 159, n.º 2 (2019): 97–108. http://dx.doi.org/10.1159/000503912.

Texto completo
Resumen
The sequence and structure of grape SBP-box-like18 (VvSPL18) were identified and characterized to explore its regulatory roles during grape berry development and ripening. Homologous conservation across diverse plant species was observed, and its potential function and modulated roles in grapes were investigated. The results showed that VvSPL18 has an ORF sequence of 1,137 bp, encodes 378 amino acids, and is located on chromosome 14 of grapevine. VvSPL18 has the closest relationship with its homolog in soybeans. The promoter of VvSPL18 contains cis-elements responsive to gibberellins (GA) and salicylic acid (SA), indicating that this gene might respond to these hormones involved in the modulation of grape berry. VvSPL18 is mainly distributed in the nucleus. Expression profiles showed that VvSPL18 is highly expressed only at the veraison stage of the grape berry and is slightly expressed in other phases. RNA-seq data also revealed that VvSPL18 might participate in the modulation of grape berry development and ripening. Treatment with diverse hormones demonstrated that abscisic acid (ABA) had almost no effect on its expression, whereas naphthalene acetic acid (NAA) significantly upregulated its expression at the veraison stage. We also found that VvSPL18 has a GA-responsive cis-element but no NAA-responsive cis-element. GA could promote the expression of VvSPL18 with a peak at an earlier stage than NAA, suggesting that VvSPL18 responds faster to GA than to NAA. This result indicates that VvSPL18 might modulate berry development at this phase through an ABA-independent pathway, and it might directly respond to GA, but indirectly to NAA. Our findings provide insights into the functions of VvSPL18 in mediating grape berry development and ripening.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Incesu, Melek, Sinem Karakus, Hanifeh Seyed Hajizadeh, Fadime Ates, Metin Turan, Milan Skalicky y Ozkan Kaya. "Changes in Biogenic Amines of Two Table Grapes (cv. Bronx Seedless and Italia) during Berry Development and Ripening". Plants 11, n.º 21 (26 de octubre de 2022): 2845. http://dx.doi.org/10.3390/plants11212845.

Texto completo
Resumen
Bronx Seedless and Italia (Vitis vinifera L.) are a variety preferred by consumers owing to their exciting flavour and widely cultivated in Aegean Region in Turkey. The aim was to identify the biogenic amines of these table grapes during berry ripeness. The biogenic amines were analyzed by HPLC in six different berry phenological stages. Italia grapes presented lower biogenic amine content than Bronx Seedless table grapes. The concentration of most of the biogenic amines analyzed linearly raised from the beginning of berry touch to when berries ripen for harvest stages. The most common biogenic amines in grape varieties were putrescine, followed by histamine, agmatine, and tyramine. There was also a positive correlation between all biogenic amines of the two grape varieties. The weakest correlation was found between spermine and cadaverine, whereas the strongest correlation was found among dopamine, trimethylamine, norepinephrine, tyramine, and histamine amines. The present study is the first report of a synthesis study regarding the effect of B.A.s on quality characteristics throughout berry ripeness in grape varieties containing foxy and muscat tastes. The concentration and composition of biogenic amines identified for both varieties might provide helpful information regarding human health and the vintage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zabadal, Thomas J. y Martin J. Bukovac. "Effect of CPPU on Fruit Development of Selected Seedless and Seeded Grape Cultivars". HortScience 41, n.º 1 (febrero de 2006): 154–57. http://dx.doi.org/10.21273/hortsci.41.1.154.

Texto completo
Resumen
The effects of CPPU [forchlorfenuron, N-(2-chloro-4-pyridinyl)-N-phenylurea] on berry development of Vitis labrusca and V. labrusca × V. vinifera cultivars was evaluated under field conditions. A concentration response was initially established by spraying clusters of `Himrod' at a mean berry diameter of about 5 mm with 0, 5, 10, or 15 mg·L–1 CPPU. Berry enlargement was monitored (16, 30, 44, and 59 days after treatment) during development. Cluster mass, number of berries per cluster, berry mass and firmness, and °Brix were determined at harvest. Berry mass was dramatically increased (2.3 versus about 3.6 g/berry) at harvest by all concentrations of CPPU. Cluster mass and compactness were also increased and berry firmness was linearly related to CPPU concentration (r2 = 0.997). There was no significant effect on number of berries per cluster (79 to 86). °Brix, rachis necrosis at harvest, and berry abscission after 30 days of refrigerated storage (1 °C) were significantly reduced. Effect of time of CPPU application (0, 5, and 10 mg·L–1) was established by treatment of clusters at mean berry diameters of about 4, 5, 7, and 9 mm. Response was indexed by following berry enlargement at 14, 28, 42, and 56 (maturity) days after treatment. Maximum berry size for both 5 and 10 mg·L–1 was obtained from applications at 4 to 7 mm berry diameter. Relative response of seedless and seeded cultivars was compared by application of CPPU at 0, 5, 10, or 15 mg·L–1 to clusters (4 to 6 mm berry diameter) of seedless `Vanessa' and `Lakemont' and seeded `Concord' and `Niagara'. Bioresponse was determined by a time course of berry enlargement and berry and cluster mass, number of berries per cluster, and rating cluster compactness at maturity. Except for `Lakemont' at the 5 mg·L–1 concentration, CPPU at all concentrations increased seedless berry diameter significantly from the first measurement at 14 through 56 days after application. Berry and cluster mass and cluster compactness were significantly increased in `Vanessa'. In contrast, the only effect of CPPU on the two seeded cultivars was an increase in berry size in `Concord' and an initial increase in berry size 14 days after application in `Niagara'.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Matthews, M. A., G. Cheng y S. A. Weinbaum. "Changes in Water Potential and Dermal Extensibility During Grape Berry Development". Journal of the American Society for Horticultural Science 112, n.º 2 (marzo de 1987): 314–19. http://dx.doi.org/10.21273/jashs.112.2.314.

Texto completo
Resumen
Abstract A comprehensive analysis of fruit water relations and the extensibility of the dermal tissue (skin) of Vitis vinifera cv. Cardinal berries was conducted throughout the period of biphasic growth. The pattern of berry growth was not coordinated with the patterns of berry water potential or turgor. It was anticipated, therefore, that cell wall extensibility and yield threshold varied during berry development. Measurements of uniaxial extensibility of dermal strips removed from berries indicated that total and plastic extensibility were relatively constant during stages I and II of berry growth, but increased significantly in the transition from stage II to stage III. The functional interrelationships between sugar accumulation, skin extensibility, and berry growth, which increases at the onset of stage III, remain to be elucidated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zabadal, T. J. y M. J. Bukovac. "581 Effect of CPPU on Fruit Development in Seedless and Seeded Grape Cultivars". HortScience 35, n.º 3 (junio de 2000): 496D—496. http://dx.doi.org/10.21273/hortsci.35.3.496d.

Texto completo
Resumen
The effect of CPPU [forchlorfenuron; N-(2-chloro-4-pyridinyl)-N-phenylurea] on berry development of selected seedless and seeded grape cultivars was evaluated under field conditions. A concentration response curve was initially established by spraying clusters of `Himrod' at a mean berry diameter of 5 mm with 0, 5, 10, and 15 ppm CPPU. Berry enlargement was monitored (16, 30, 44, and 59 days after treatment) during development and cluster weight, berry number/cluster, weight, firmness and °Brix were determined at harvest. Berry size was dramatically (2.3 vs. about 3.6 g/berry) increased at harvest by all concentrations of CPPU; the response being linearly related to concentration (r2 = 0.89). Cluster weight and compactness (rated) and berry firmness were significantly increased. There was no significant effect on berry number (79 to 86/cluster). °Brix and rachis necrosis (at harvest) as well as berry abscission after 30 days of refrigerated storage were significantly reduced. Effect of time of CPPU application (0, 5, and 10 ppm) was established by treatment of clusters at mean berry diameters of 4, 5, 7, and 9 mm. Response was indexed by following berry enlargement at 14, 28, 42, and 56 (maturity) days after treatment. Maximum berry enlargement for both 5 and 10 ppm was obtained from applications at 4 to 7 mm in diameter. Relative responsiveness of seedless and seeded cultivars was compared by application of CPPU at 0, 5, 10, and 15 ppm to clusters (4–6 mm berry diameter) of seedless `Himrod', `Vanessa' and `Lakemont' and seeded `Concord' and `Niagara'. Bioresponse was determined by a time course of berry enlargement and berry and cluster weight, number of berries/cluster and rating cluster compactness at maturity. CPPU at all concentrations increased seedless berry diameter significantly from the first measurement at 14 days through 56 days after maturity. Berry and cluster weight and cluster compactness were increased in the seedless cultivars, although `Lakemont' appeared less responsive than `Himrod' and `Vanessa'. CPPU did not change (`Lakemont') or decreased (`Himrod', `Vanessa') berries/cluster. In contrast, the only effect of CPPU on the seeded cultivars was an initial increase in berry diameter 14 days after application.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kuang, Yangfu, Chong Ren, Yi Wang, Gathunga Elias Kirabi, Yongjian Wang, Lijun Wang, Peige Fan y Zhenchang Liang. "Characterization of the Berry Quality Traits and Metabolites of ‘Beimei’ Interspecific Hybrid Wine Grapes during Berry Development and Winemaking". Horticulturae 8, n.º 6 (13 de junio de 2022): 516. http://dx.doi.org/10.3390/horticulturae8060516.

Texto completo
Resumen
The development of grape varieties with cold resistance can be an advantage for the wine industry. ‘Beimei’, an interspecific hybrid wine grape variety with cold resistance and pleasant rose aroma, is now extensively cultivated in China. In the present study, the berry quality traits and metabolites of ‘Beimei’ and other “Bei” varieties were characterized. The sugar (234 g/L–391 g/L) and acid (6.2–8.3 g/L) contents of ‘Beimei’ and four additional “Bei” varieties, i.e., ‘Beihong’, ‘Beixi’, ‘Beixin’, and ‘Xinbeichun’ berries were smilar to that of traditional Vitis vinifera varieties. ‘Beimei’ grapes has the highest volatile compounds composition, especially the content of rose aroma compounds (2-phenyl-ethyl alcohol and neryl alcohol), which was significantly higher than that of the other “Bei” wine grape varieties. After fermentation, ‘Beimei’ wines showed improved quality, with a high resveratrol content (18 mg/L) compared to traditional Eurasian wines. In addition, the high content of main rose aroma compounds (acetic acid 2-phenylethyl acetate, phenylethyl alcohol, neryl alcohol and beta-damascenone) contribute to a pleasant rose aroma in ‘Beimei’ wines. In summary, these results indicate that ‘Beimei’ grapes could be used as a winemaking grape variety considering global climate changes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tobin, Patrick C., Sudha Nagarkatti y Michael C. Saunders. "Modeling Development in Grape Berry Moth (Lepidoptera: Tortricidae)". Environmental Entomology 30, n.º 4 (1 de agosto de 2001): 692–99. http://dx.doi.org/10.1603/0046-225x-30.4.692.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Grape berry development"

1

Sonnekus, Nastassja. "Development and change that occurs in table grape berry composition during growth". Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96871.

Texto completo
Resumen
Thesis (MSc)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: Grape quality is important for the producer, exporter and the consumer. Consumers judge table grapes according to their size, colour, taste and shelf life. The consumer’s prerequisites will influence the producer. Therefore, it is essential to know how the table grape berry develops so that it can be manipulated, favouring the postharvest quality and shelf life. This study was performed on Prime and Crimson Seedless, both grafted onto Ramsey, in the Paarl district of South Africa. The aim of this study was to describe and quantify table grape berry development and compositional changes taking place throughout growth and ripening. The effect of sugar:acid ratio on postharvest shelf life was also evaluated. To evaluate whether berry size influenced the measured development parameters, three berry sizes were induced for both cultivars by using plant bioregulators such as gibberellic acid (GA3) and forchlorfenuron – synthetic cytokinin (CPPU) or girdling. The following sizes were obtained for Prime: (i) small berries (<20 mm) with no treatment, which acted as the control; (ii) medium berries (20-24 mm) obtained by 15 ppm GA3 application at 8 mm berry size; (iii) large berries (>24 mm) obtained by combination of 15 ppm GA3 and 1 ppm CPPU application at 8 mm berry size. Crimson Seedless berry sizes were as follows: (i) small berries (<18 mm) with no treatment, which acted as the control; (ii) medium berries (18-22 mm) treated with 10 ppm GA3 at 7 mm berry size; (iii) large berries (>22 mm) treated with 10 ppm GA3 and vines were girdled at 7 mm berry size. To evaluate the effect of sugar:acid ratio on postharvest shelf life, grapes were stored for five weeks at -0.5 ˚C and another week at 7.5˚C. The bunches were evaluated for loose berries, browning, soft tissue breakdown, decay and berry split. The following components were analysed for both cultivars to determine changes in berry composition throughout the season: berry fresh weight, total soluble solids (TSS), glucose, fructose, titratable acidity (TA), tartaric acid, malic acid, abscisic acid (ABA) and total phenols. Total and individual anthocyanins were analysed for Crimson Seedless. Differences were obtained for the three berry sizes for both cultivars. Véraison, representing the start of ripening, started at the same time in successive seasons: 21 days after pea size berry (5 mm berry diameter) for Prime and 28 days after pea size berry (5 mm berry diameter) for Crimson Seedless. A lag stage was not observed, at seven day sampling intervals, for either of the cultivars. Components such as TSS, glucose, fructose and TA content per berry were influenced by berry size in either one or in both seasons for both cultivars. Significant changes in component concentration were detected at the start of, or around véraison. Sugar concentrations (TSS) already started to increase for both cultivars before the start of véraison. At véraison, concentrations of glucose, fructose and ABA increased while concentrations of TA, tartaric acid, malic acid and total phenols decreased. Total anthocyanins in Crimson Seedless started to increase one week after véraison commenced. The main anthocyanin found in Crimson Seedless was peonidin-3-glucoside. During ripening a 1:1 glucose:fructose ratio was detected in both cultivars. Prime tartaric:malic acid ratio was lower than Crimson Seedless tartaric:malic acid ratio in both seasons. Tartaric acid was the main organic acid found in Prime, while malic acid was the main organic acid found in Crimson Seedless. No significant differences were found in the postharvest defects between the different berry sizes. However, tendencies for differences were observed which led to the assumption that medium size berries were more prone to loose berries in both cultivars. Large berries showed a higher percentage berry split for both cultivars. Crimson Seedless second harvest date took place 24 hours after rainfall which could have very likely led to the higher percentages berry defects compared to the first season. Greater berry decay was found with later harvest dates for both cultivars. No significant differences were found for the TSS:TA ratio between the three berry sizes for both cultivars. Postharvest defects were therefore found not only to be influenced by TSS:TA ratio but rather by harvest date and packing procedures. Environmental conditions prior to harvest also had an impact on postharvest shelf life.
AFRIKAANSE OPSOMMING: Druif kwaliteit is belangrik vir die produsent, uitvoerder en verbruiker. Tafeldruiwe word gekeur deur die verbruiker volgens grootte, kleur, smaak en raklewe. Die verbruiker se voorkeure sal dus die produsent beïnvloed. Daarom is dit belangrik om te weet hoe tafeldruiwe ontwikkel ten einde korrelsamestelling te manipuleer om na-oes kwaliteit en raklewe te kan bevoordeel. Hierdie studie is uitgevoer op Prime en Crimson Seedless, beide geënt op Ramsey, in die Paarl distrik van Suid Afrika. Die doel van die studie is om vas te stel hoe korrelsamestelling gedurende groei en rypwording verander. Die effek van suiker:suurverhouding op na-oes raklewe is ook geëvalueer. Om te kan meet of korrel grootte die gemete parameter beïnvloed is drie korrelgroottes verkry vir albei kultivars deur die gebruik van plant bioreguleerders, te wete gibbereliensuur (GA3) en sintetiese sitokiniene (CPPU), of ringelering. Die volgende korrelgroottes is verkry vir Prime: (i) klein korrels (<20 mm) d.m.v. geen behandeling, geklassifiseerd as kontrole; (ii) medium korrels (20-24 mm) d.m.v. ‘n 15 dpm GA3 behandeling by 8 mm korrelgrootte; (iii) groot korrels (>24 mm) d.m.v. ‘n kombinasie van 15 dpm GA3 en 1 dpm CPPU by 8 mm korrelgrootte. Crimson Seedless korrelgroottes was soos volg: (i) klein korrels (<18 mm) d.m.v. geen behandeling, wat as kontrole gedien het; (ii) medium korrels (18-22 mm) d.m.v. ‘n 10 dpm GA3 behandeling by 7 mm korrelgrootte; (iii) groot korrels (>22 mm) d.m.v. ‘n 10 dpm GA3 behandeling en gelyktydige ringelering by 7 mm korrelgrootte. Om die effek van suiker:suur verhouding op na-oes houvermoë te kon evalueer was druiwe gestoor vir vyf weke by -0.5˚C en ‘n verdere week by 7˚C. Die trosse is geëvalueer vir loskorrels, verbruining, sagte weefsel afbreek, verval en korrelbars. Die volgende komponente is geanaliseer vir albei kultivars om veranderinge in korrelsamestelling gedurende die seisoen te bepaal: vars korrelgewig, totale oplosbare vaste stowwe (suikerinhoud), glukose, fruktose, titreerbare sure, wynsteensuur, appelsuur, absisiensuur en totale fenole. Die totale en individuele antosianiene is ook vir Crimson Seedless gemeet. Beduidende verskille tussen die drie korrelgroottes vir albei kultivars is verkry. Deurslaan, naamlik die begin van rypwording, het op dieselfde dag in opeenvolgende seisoene plaasgevind: 21 dae na ertjiekorrel grootte (5 mm korrel deursnee) vir Prime en 28 dae na ertjiekorrel grootte (5 mm korrel deursnee) vir Crimson Seedless. In teenstelling met die tipiese korrel ontwikkelingspatroon is ‘n rusfase nie waargeneem by beide kultivars nie. Komponente soos suikerinhoud, glukose, fruktose en titreerbare suur inhoud per korrel is deur korrelgrootte beïnvloed in een of albei seisoene vir beide kultivars. Suiker konsentrasie van albei kultivars het reeds voor deurslaan begin toeneem. By deurslaan het die konsentrasies van glukose, fruktose en absisiensuur inhoud toegeneem, terwyl die konsentraies van titreerbare sure, wynsteensuur, appelsuur en totale fenole gedaal het. Totale antosianiene in Crimson Seedless het ‘n week na deurslaan begin toeneem. Die hoof antosianien in Crimson Seedless is peonidien-3-glukosied. Gedurende rypwording was daar ‘n 1:1 glukose:fruktose verhouding gevind vir beide kultivars. In terme van sure is Prime se wynsteensuur:appelsuur verhouding laer as in Crimson Seedless vir albei seisoene. Wynsteensuur is die hoof organiese suur in Prime terwyl appelsuur die hoof organiese suur in Crimson Seedless is. Geen betekenisvolle verskille vir na-oes houvermoë tussen korrelgroottes is waargeneem vir beide kultivars nie. Daar was egter tendense wat aanleiding gegee het in die aanname dat medium grootte korrels geneig is tot loskorrels in albei kultivars. Groot korrels het ‘n hoër korrelbars persentasie getoon vir beide kultivars. Crimson Seedless se tweede oes het plaasgevind 24 uur na reënval, wat aanleiding gegee het tot hoër persentasies korrelbederf. Hoër persentasie korrelbederf was ook gevind met later oesdatums. Geen beduidende verskille is gevind vir suiker:suur verhouding tussen die drie korrelgroottes vir beide kultivars nie. Dus word na-oes houvermoë nie net deur suiker:suur verhouding beïnvloed nie, maar ook deur oestyd en verpakkingsprodsedures. Omgewingsomstandighede voor oes kan ook na-oes houvermoë beïnvloed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Stines, Anna P. "Expression of the key proline biosynthetic enzymes P5CS and oat during grape berry development". Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phs859.pdf.

Texto completo
Resumen
Errata tipped in behind back end paper. Bibliography: leaves 104-123. The work described in this thesis was undertaken to document the accumulation of amino acids during grape berry development and to investigate the mechanisms underlying the significant accumulation of proline late in ripening in some cultivars. (conclusion)
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lo, Giudice Danielle. "The Impact of Prohexadione-calcium on Grape Vegetative and Reproductive Development and Wine Chemistry". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/42768.

Texto completo
Resumen
Prohexadione-calcium (P-ca), as ApogeeTM, was evaluated in 2000 and 2001 for impact to grape vegetative and reproductive development. In 2000, P-ca (250 mg/L) was applied to Seyval, Cabernet Sauvignon, and Cabernet franc (125, 250, and 375 mg/L). P-ca reduced primary shoot growth for all cultivars and decreased cane pruning weight of Seyval. P-ca (375 mg/L) increased Cabernet franc canopy gaps but increased Cabernet Sauvignon lateral leaf area and leaf layer number. P-ca reduced components of yield for all cultivars. In 2001, P-ca (250 mg/L) was applied singularly at weekly intervals to Cabernet Sauvignon clusters and pre and post-bloom to Cabernet franc and Chardonnay canopies. Application at E-L stages 21 and 23 decreased Cabernet Sauvignon fruit set whereas application at E-L stages 26, 27, and 29 reduced berry weight without impacting fruit set. Berry weight reduction correlated to higher color intensity (420+520 nm), anthocyanins, total phenols and phenol-free glycosyl-glucose (PFGG). Cabernet franc vegetative and reproductive development was generally not affected yet treatment increased absorbance at 280, 420, and 520 nm, color intensity, anthocyanins and total phenols. Pre-bloom applications inhibited Chardonnay vegetative development, and reduced components of yield, and fruit chemistry values: hydroxycinnamates, total phenols, flavonoids, PPFG and absorbance at 280 and 320 nm. Post-bloom applications did not affect Chardonnay vegetative or reproductive development, yet increased PFGG. Treatment did not affect Chardonnay wine chemistry but two post-bloom applications increased Cabernet franc wine anthocyanins and total phenols. Wine aroma and flavor triangle difference tests did not indicate significant treatment differences.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dimopoulos, Nicolas. "Compositional changes of the grape berry (Vitis vinifera L.) cuticle during fruit development in response to water deficit stress". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/64184.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tira-Umphon, Arak Chervin Christian. "Influence de l'éthylène sur le développement des baies de raisin et expression des gènes apparentés fluence of the ethylene on the grape berry development and related-gene expression /". Toulouse : INP Toulouse, 2008. http://ethesis.inp-toulouse.fr/archive/00000604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ferrier, Thilia. "Les facteurs de transcription MYB et la régulation de la biosynthèse des flavonoïdes dans la baie de raisin : analyse fonctionnelle et identification de nouveaux candidats". Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13663/document.

Texto completo
Resumen
Les flavonoïdes (anthocyanes, flavonols et proanthocyanidines) sont des éléments clés de la qualité organoleptique des baies de raisin. Chez les végétaux, l’expression des gènes de la voie de biosynthèse de ces composés est contrôlée par des complexes protéiques organisés autour des facteurs de transcription de type MYB. Dans le cadre de cette thèse, une première approche s’est intéressée aux mécanismes de régulation de l’expression du gène VvMyb5a et de l’activité biologique de la protéine codée par ce gène. L’analyse du promoteur VvMyb5a a montré que son activité au cours du développement de la baie serait plutôt placée sous contrôle hormonal. Des expériences de double hybride ont révélé que la protéine VvMyb5a pouvait interagir avec une protéine kinase de type GAMYB et une protéine WD40. Une deuxième approche, basée sur l’analyse globale du transcriptome de mutants naturels de vigne affectés dans la biosynthèse des anthocyanes, a permis d’identifier deux nouveaux gènes MYB nommés VvMybPA1 et VvMyb24. L’expression différentielle de ces gènes dans des baies de cépages rouges et blancs a été confirmée et leurs caractérisations fonctionnelles ont été engagées chez Arabidopsis thaliana
Flavonoids, like anthocyanins, flavonols and condensed tannins, are key elements of he organoleptic quality of grape berries. In plants, expression of genes encoding enzymes of he flavonoid biosynthetic pathway is controlled by small protein complexes organised around MYB transcription factors. In the present work, we first focused on the regulatory mechanisms of VvMyb5a expression and on the biological activity of the corresponding protein. Promoter analysis indicated that VvMyb5a expression is probably mainly controlled by hormones. A yeast two-hybrid screen revealed that VvMyb5a can interact with a GAMYB ype protein kinase and a WD40 protein. In a second time, global transcriptome analysis of grapevine natural mutants deficient in anthocyanin biosynthesis led to the identification of wo new MYB genes, named VvMybPA1 and VvMyb24. Differential expression of these two genes in red and white berry skins was confirmed by RT-PCR and their functional characterizations have been initiated in Arabidopsis thaliana
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hall, Geoffrey Earle. "Berry shrivel physiological, compositional and anatomical consequences affecting berry development in Vitis vinifera L. /". Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/G_Hall_042310.pdf.

Texto completo
Resumen
Thesis (M.S. in horticulture)--Washington State University, May 2010.
Title from PDF title page (viewed on July 7, 2010). "Department of Horticulture and Landscape Architecture." Includes bibliographical references (p. 113-119).
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Arrizabalaga, Marta. "Response of Tempranillo (Vitis vinifera L.) clones to climate change-related factors (elevated temperature, high CO2, and water deficit) : plant performance and berry composition". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0439.

Texto completo
Resumen
Le changement climatique devrait modifier les conditions environnementales dans le futur, affectant ainsi l'agriculture. Le Tempranillo, une variété de vigne rouge (Vitis vinifera L .) largement cultivée au niveau international, pourrait être affecté par l’augmentation des températures moyennes mondiales et des niveaux de CO2 dans l’atmosphère, ainsi que par la diminution de la disponibilité en eau sur sa zone traditionnelle de culture. L'utilisation de la diversité intra-variétale a été proposée comme une stratégie pour essayer de conserver la typicité du vin et les variétés régionales dans les conditions de cultures futures, en déplaçant la phase de maturation vers des périodes aux conditions environnementales plus favorables. L’objectif de cette thèse était donc de déterminer la réponse de différents clones de Tempranillo aux conditions environnementales simulées de 2100, en se concentrant sur la croissance et le développement des plantes, ainsi que sur la composition des baies. Des boutures fructifères de clones de Tempranillo, dont la longueur du cycle de reproduction était différente, ont été exposées à différents scénarios climatiques dans des serres à gradient de température (TGG) et des serres de chambre de croissance (GCG) depuis la fructification jusqu’à la maturité. Les impacts de la température élevée (+4 ° C), du CO2 élevé (700 ppm) et du déficit en eau, combinés ou non, ont été évalués. Les résultats montrent une augmentation de la croissance végétative et une réduction de la production dues aux températures élevées. La concentration élevée de CO2 a également augmenté la croissance végétative et l'activité photosynthétique. Néanmoins, un processus d'acclimatation a été observé, celui-ci étant plus fort lorsqu’un haut niveau de CO2 est combiné à une température élevée. Le déficit en eau a fortement réduit l'activité photosynthétique et la croissance végétative, occultant les effets de la température et du CO2. La température élevée, que ce soit individuellement ou associée à des niveaux élevés de CO2, a accéléré l'accumulation de sucres et la date de maturité a été avancée, mais ces effets ont été atténués par le déficit en eau. La dégradation de l’acide malique a également été favorisée par l’augmentation de la température, en particulier lorsque cette dernière est associée à une concentration élevée de CO2 et à un déficit en eau. La concentration et le profil des acides aminés ont été influencés par les températures élevées, un niveau de CO2 élevé et, en particulier, par un déficit en eau. L'augmentation de CO2 a réduit l'effet de la température sur le découplage de l’accumulation des anthocyanes par rapport à celle des sucres ; cependant, la combinaison d’une température élevée, d’un haut niveau de CO2 et d’un déficit en eau a conduit à un déséquilibre entre ces deux composés du raisin. Le profil des anthocyanes a été modifié par le changement climatique, une température élevée augmentant la proportion des formes acylées tandis qu’un haut niveau de CO2 et un déficit hydrique ont favorisé quant à eux l'abondance relative de la malvidine, et des formes acylées, méthylées et trihydroxylées. Les clones étudiés ont montré des différences dans leur développement phénologique, leur croissance végétative et reproductive, ainsi que dans la composition de leurs raisins. En outre, les résultats révèlent l’existence d’une réponse différentielle des clones de Tempranillo aux conditions environnementales prévues pour 2100 en termes de performance de la plante et de composition du raisin. De façon générale, parmi les clones étudiés, RJ43 fut le plus affecté par les conditions de croissance futures (températures élevées, haut niveau de CO2 et déficit en eau) aussi bien en termes de développement phénologique qu’en termes de concentration en anthocyanes et de leur profil.[...]
Climate change is expected to modify future environmental conditions, therefore affecting agriculture. Tempranillo, a largely cultivated worldwide grapevine (Vitis vinifera L.) red variety, will be affected by the increase of global mean temperature and atmospheric CO2 levels and the decrease of water availability in its cultivation area. The use of the intra-varietal diversity has been proposed as a strategy for keeping wine typicity and regional varieties cultivation under future growing conditions by shifting the ripening phase to more favourable environmental conditions. The aim of the thesis was to determine the response of different clones of Tempranillo to simulated 2100 environmental conditions, focusing on plant growth and development, as well as on berry composition. Fruit-bearing cuttings of Tempranillo clones, which differed in the length of their reproductive cycle, were exposed from fruit set to maturity to different scenarios of climate change in temperature gradient greenhouses (TGG) and growth chamber greenhouses (GCG). The impact of elevated temperature (+4 °C), elevated CO2 (700 ppm) and water deficit, both in combination or independently, were evaluated. The results show an increment of vegetative growth and a reduction of yield due to high temperatures. Elevated CO2 concentration also increased vegetative growth and photosynthetic activity, even though an acclimation process was observed, being stronger when combined with high temperature. Water deficit reduced severely the photosynthetic activity and vegetative growth, overshadowing the temperature and CO2 effects. Elevated temperature, both individually and combined with high CO2 levels, hastened sugar accumulation and advanced maturity, but these effects were mitigated by water deficit. Malic acid degradation was also enhanced by high temperature, especially when combined with elevated CO2 and water deficit. Amino acid concentration and profile were affected by high temperature, elevated atmospheric CO2 and, especially, water deficit. Elevated CO2 reduced the effect of temperature decoupling the anthocyanin and TSS accumulation; however, the combination of elevated temperature, high CO2 and water deficit led to the imbalance between these two grape components. Anthocyanin profile was modified by climate change, high temperature increasing the relative abundance of acylated forms and both elevated CO2 and drought favouring the relative content of malvidin and acylated, methylated and tri-hydroxylated forms. The clones studied showed differences in their phenological development, vegetative and reproductive growth, as well as in their grape composition. In addition, the results reveal the existence of a differential response of Tempranillo clones to the environmental conditions projected for 2100 in relation to plant performance and grape composition. In general, RJ43 was the most affected by the future growing conditions (high temperature, elevated CO2 and water deficit) among the clones studied in terms of phenology and anthocyanin concentration and profile. Conversely, VN31 maintained the highest anthocyanin and anthoycianin:TSS ratio, whereas 1084 had the lowest sugar, malic acid and anthocyanin levels. The differences observed in the response of the clones to climate change not always depended on their reproductive cycle length
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ebadi, Ali. "Effects of pre-flowering conditions of temperature and light on flower and berry development in model grapevines". Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phe15.pdf.

Texto completo
Resumen
Copies of author's previously published articles inserted. Bibliography: leaves 143-167. Temperature may affect fruit-set in grapevines through its effect on the development of the flowers up to flower opening and on pollination, be it on the germination of the pollen and the growth of the pollen tube, or on the post-fertilisation growth of the ovule.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Berdeja, Aramayo Mariam. "Effects of water stress and rootstock genotype on grape berry composition". Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22103/document.

Texto completo
Resumen
Au cours des prochaines années, il est prédit que le changement climatique va influencer la production des cultures et impacter négativement le secteur agricole. Parmi les cultures mondiales majeures, la vigne est cultivée pour ses baies, qui sont la base de produits à forte valeur ajoutée (vin, liqueurs, et métabolites secondaires utilisés dans les industries pharmaceutiques et cosmétologiques) et dont le métabolisme est fortement sensible au climat. Cependant, la réponse au niveau de la composition de la baie ainsi que les mécanismes moléculaires sous-jacents mettant en évidence la capacité de l’interaction porte-greffe/greffon à influencer le métabolisme de la baie dans des conditions de stress hydrique est encore très peu étudiée et compris. Dans ce contexte, cette thèse a eu pour objectifs de répondre à ces questionnements en combinant des approches ecophysiologique, biochimique et transcriptomique. Vitis vinifera cv. Pinot noir greffé soit sur le porte greffe 110R (tolérance à la sécheresse, vigueur conférée moyenne à forte) ou 125AA (sensible à la sécheresse, forte vigueur conférée) ont été étudié au cours de 3 années (2009, 2010 et 2011), au vignoble et dans des conditions témoin (pluviométrie normale) ou de stress hydrique provoqué. Différents paramètres physiologiques (statut hydrique et rendement) ainsi que le profil métabolique de la baie (sucres, acides organiques, acides aminés et anthocyanes) ont été caractérisés à quatre stades de développement (E-L 33, E-L 35, E-L 36, E-L 38). D’autre part, une analyse microarray sur génome complet a également été réalisée pour deux années (2009 et 2010) et deux stades de développement critiques et représentatifs (E-L 35 et E-L 36). Dans son ensemble, cette thèse fournit des nouveaux éléments concernant la réponse métabolique de la baie au porte-greffe et à la contrainte hydrique, et met en évidence des possibles mécanismes moléculaires impliqués dans cette réponse
Climate change is expected to influence crop production and to impact negatively the agricultural sector in the future. Among the major crops cultivated worldwide, grapevine provides berries that are the basis of high added value products (wines, liquors, and secondary metabolites used in the pharmaceutical and cosmetological industry) and whose metabolism is strongly sensitive to climate (vintage effect). However, the response of berry composition and the molecular mechanisms underlying the ability of rootstock/scion interaction to influence grape berry metabolism under drought stress are still poorly understood. In this context, this work aimed to fill the gaps on the aforementioned questions by combining comprehensive ecophysiological measurements, detailed metabolite analysis, and whole-genome transcriptome analysis. Vitis vinifera cv. Pinot noir grafted on either rootstock 110R (drought tolerant, mid- to high vigor) or 125AA (drought sensitive, high vigor) were studied during three growing seasons (2009, 2010, and 2011) in the field under normal rainfall or water shortage conditions. We characterized different physiological parameters (water status and yield components) and berry metabolomic profiles (sugars, organic acids, free amino acids and anthocyanins) during four developmental stages (E-L 33, E-L 35, E-L 36, E-L 38). Besides we also performed a microarray analysis in two years (2009 and 2010) at two critical and representative developmental stages (E-L 35 and E-L 36). Overall, this work provides novel insights into the response of grape berry metabolites to rootstock and to drought and uncovers some possible molecular mechanisms underlying the berry response to different rootstock/water status combinations
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Grape berry development"

1

Kong, Junhua, Margot Berger, Amélie Colling, Linda Stammitti, Emeline Teyssier y Philippe Gallusci. "Epigenetic Regulation in Fleshy Fruit: Perspective for Grape Berry Development and Ripening". En Compendium of Plant Genomes, 167–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18601-2_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ibrahim, H., F. Dedieu y M. Garcia. "Influence of rootstock on malate and tartrate accumulation during grape (Vitis vinifera L. CVS. cot and negrette) berry development". En Plant Nutrition, 330–31. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_159.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

"Polyamines and Grape Berry Development". En The Biochemistry of the Grape Berry, editado por M. N. Panagiotis, A. Aziz y R. A. A. Kalliopi, 137–59. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805360511201010137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dalton, David R. "The Grape Berry". En The Chemistry of Wine. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190687199.003.0022.

Texto completo
Resumen
Beginning with fruit set (generally the grape berry is now between 1.5 and 3.0 mm, i.e., less than 1/ 8 of an inch in diameter) the grape berry growth is divided into three stages. Stages I and III correspond to periods of rapid growth, and the intervening slow growth phase is called Stage II. Generally the slow growth stage (Stage II) corresponds to the slowing of Stage I and the acceleration of Stage III, but it is clear that different grape cultivars have stages of different lengths even under ostensibly identical conditions. In the first stage of fruit set (also called “nouaison”) the actual development of the flower ovary into the grape berry begins. The seeds in the two seed cavities (the locules) and the flesh (the pericarp) begin to take form. The pericarp separates into the exocarp (the skin with its cuticle—a thin wax coating) and the mesocarp. The mesocarp, as it grows and divides, will eventually (by the end of Stage III) account for more than 90% of the grape’s weight. The exocarp, significantly thinner than the mesocarp, may be only five or six cells thick, and the cuticle only several layers of lipids (waxy, fatty acid esters, and compounds similar to those of cell walls and the chloroplast envelope, see pages 30 and 31). It is in this stage that the as yet undeveloped berries are green and hard (it has been sug¬gested that this is because chlorophyll is present and photosynthesis in the berry—as well as in leaves—is occurring). The berries are low in sugar (sucrose) but high in carboxylic acids, predominately malic acid and tartaric acid along with, generally, a lesser amount of ascorbic acid (vitamin C), hydroxycinnamic acid, and some acidic tannins (Figures 13.1 and 13.2). The grape berry structure is generally divided into three types of tissue: skin, flesh, and seed (Figure 13.3). The first, skin, as already mentioned is also known as exocarp.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

"Hormonal Control of Grape Berry Development and Ripening". En The Biochemistry of the Grape Berry, editado por C. Böttcher y C. Davies, 194–217. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805360511201010194.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

"Transcriptomics and Metabolomics for the Analysis of Grape Berry Development". En The Biochemistry of the Grape Berry, editado por G. B. Tornielli, A. Zamboni, S. Zenoni, M. Delledonne y M. Pezzotti, 218–40. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805360511201010218.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Upadhyay, Anuradha, Roshni R. Samarth, Uma Jadhav y Narendra Y. Kadoo. "Understanding grape berry development and response to environmental factors through omics approaches". En Omics in Horticultural Crops, 147–64. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-89905-5.00020-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mathieu, Sandrine, Nancy Terrier, Jérôme Procureur, Frédéric Bigey y Ziya Günata. "Vitis vinifera carotenoid cleavage dioxygenase (VvCCD1): gene expression during grape berry development and cleavage of carotenoids by recombinant protein". En Flavour Science - Recent Advances and Trends, 85–88. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-4501(06)80020-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Grape berry development"

1

Didenko, P. A. "Effect of new-generation mineral fertilizers on productivity of grapes and quality of wine in the Crimea". En CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-15.

Texto completo
Resumen
The article presents the results of the experimental study of the effect of new-generation mineral fertilizer “Nutri-Fight” and water conditioner “Spartan” (used as a tank mixture) on productivity of grapes and quality of wine produced from the red wine grape variety ‘Cabernet-Sauvignon’. Experiments were carried out in the soil and climatic conditions of the mountain-valley zone of the Crimean Peninsula. The studied preparations were added to mineral fertilizer and used at such grape berry development stages as “before blooming”, “after blooming”, “pea-sized berry”, “beginning of fruit maturation”. In the course of the research we found that 2.25 l/ha of “Nutri-Fight” and 0.2 l/ha of water conditioner “Spartan” were the optimal rates and had positive effect on the grape yield and wine quality
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Grape berry development"

1

Or, Etti, Tai-Ping Sun, Amnon Lichter y Avichai Perl. Characterization and Manipulation of the Primary Components in Gibberellin Signaling in the Grape Berry. United States Department of Agriculture, enero de 2010. http://dx.doi.org/10.32747/2010.7592649.bard.

Texto completo
Resumen
Seedless cultivars dominate the table grape industry. In these cultivars it is mandatory to apply gibberellin (GA) to stimulate berry development to a commercially acceptable size. These cultivars differ in their sensitivity to GA application, and it frequently results in adverse effects such as decreased bud fertility and increased fruit drop. Our long term goals are to (1) understand the molecular basis for the differential sensitivity and identify markers for selection of sensitive cultivars (2) to develop new strategies for targeted manipulation of the grape berry response to GA that will eliminate the need in GA application and the undesirable effects of GA on the vine, while maintaining its desirable effects on the berry. Both strategies are expected to reduce production cost and meet growing consumer demand for reduced use of chemicals. This approach relies on a comprehensive characterization of the central components in the GA signaling cascade in the berry. Several key components in the GA signaling pathway were identified in Arabidopsis and rice, including the GA receptors, GID1s, and a family of DELLA proteins that are the major negative regulators of the GA response. GA activates its response pathway by binding to GID1s, which then target DELLAs for degradation via interaction with SLY, a DELLA specific F-box protein. In grape, only one DELLA gene was characterized prior to this study, which plays a major role in inhibiting GA-promoted stem growth and GA-repressed floral induction but it does not regulate fruit growth. Therefore, we speculated that other DELLA family member(s) may control GA responses in berry, and their identification and manipulation may result in GA-independent berry growth. In the current study we isolated two additional VvDELLA family members, two VvGID1 genes and two VvSLY genes. Arabidopsis anti-AtRGA polyclonal antibodies recognized all three purified VvDELLA proteins, but its interaction with VvDELLA3 was weaker. Overexpression of the VvDELLAs, the VvGID1s, and the VvSLYs in the Arabidopsis mutants ga1-3/rga-24, gid1a-2/1c-2 and sly1-10, respectively, rescued the various mutant phenotypes. In vitro GAdependent physical interaction was shown between the VvDELLAs and the VvGID1s, and GAindependent interaction was shown between the VvDELLAs and VvSLYs. Interestingly, VvDELLA3 did not interact with VvGID1b. Together, the results indicate that the identified grape homologs serve as functional DELLA repressors, receptors and DELLA-interacting F-box proteins. Expression analyses revealed that (1) VvDELLA2 was expressed in all the analyzed tissues and was the most abundant (2) VvDELLA1 was low expressed in berries, confirming former study (3) Except in carpels and very young berries, VvDELLA3 levels were the lowest in most tissues. (4) Expression of both VvGID1s was detected in all the grape tissues, but VvGID1b transcript levels were significantly higher than VvGID1a. (5) In general, both VvDELLAs and VvGID1s transcripts levels increased as tissues aged. Unfertilized and recently fertilized carpels did not follow this trend, suggesting different regulatory mechanism of GA signaling in these stages. Characterization of the response to GA of various organs in three seedless cultivars revealed differential response of the berries and rachis. Interestingly, VvDELLA3 transcript levels in the GA-unresponsive berries of cv. Spring blush were significantly higher compared to their levels in the highly responsive berries of cv. Black finger. Assuming that VvDELLA2 and VvDELLA3 are regulating berry size, constructs carrying potential dominant mutations in each gene were created. Furthermore, constitutive silencing of these genes by mIR is underway, to reveal the effect of each gene on the berry phenotype.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fait, Aaron, Grant Cramer y Avichai Perl. Towards improved grape nutrition and defense: The regulation of stilbene metabolism under drought. United States Department of Agriculture, mayo de 2014. http://dx.doi.org/10.32747/2014.7594398.bard.

Texto completo
Resumen
The goals of the present research proposal were to elucidate the physiological and molecular basis of the regulation of stilbene metabolism in grape, against the background of (i) grape metabolic network behavior in response to drought and of (ii) varietal diversity. The specific objectives included the study of the physiology of the response of different grape cultivars to continuous WD; the characterization of the differences and commonalities of gene network topology associated with WD in berry skin across varieties; the study of the metabolic response of developing berries to continuous WD with specific attention to the stilbene compounds; the integration analysis of the omics data generated; the study of isolated drought-associated stress factors on the regulation of stilbene biosynthesis in plantaand in vitro. Background to the topic Grape quality has a complex relationship with water input. Regulated water deficit (WD) is known to improve wine grapes by reducing the vine growth (without affecting fruit yield) and boosting sugar content (Keller et al. 2008). On the other hand, irregular rainfall during the summer can lead to drought-associated damage of fruit developmental process and alter fruit metabolism (Downey et al., 2006; Tarara et al., 2008; Chalmers et al., 792). In areas undergoing desertification, WD is associated with high temperatures. This WD/high temperature synergism can limit the areas of grape cultivation and can damage yields and fruit quality. Grapes and wine are the major source of stilbenes in human nutrition, and multiple stilbene-derived compounds, including isomers, polymers and glycosylated forms, have also been characterized in grapes (Jeandet et al., 2002; Halls and Yu, 2008). Heterologous expression of stilbenesynthase (STS) in a variety of plants has led to an enhanced resistance to pathogens, but in others the association has not been proven (Kobayashi et al., 2000; Soleas et al., 1995). Tomato transgenic plants harboring a grape STS had increased levels of resveratrol, ascorbate, and glutathione at the expense of the anthocyanin pathways (Giovinazzo et al. 2005), further emphasizing the intermingled relation among secondary metabolic pathways. Stilbenes are are induced in green and fleshy parts of the berries by biotic and abiotic elicitors (Chong et al., 2009). As is the case for other classes of secondary metabolites, the biosynthesis of stilbenes is not very well understood, but it is known to be under tight spatial and temporal control, which limits the availability of these compounds from plant sources. Only very few studies have attempted to analyze the effects of different environmental components on stilbene accumulation (Jeandet et al., 1995; Martinez-Ortega et al., 2000). Targeted analyses have generally shown higher levels of resveratrol in the grape skin (induced), in seeded varieties, in varieties of wine grapes, and in dark-skinned varieties (Gatto et al., 2008; summarized by Bavaresco et al., 2009). Yet, the effect of the grape variety and the rootstock on stilbene metabolism has not yet been thoroughly investigated (Bavaresco et al., 2009). The study identified a link between vine hydraulic behavior and physiology of stress with the leaf metabolism, which the PIs believe can eventually lead to the modifications identified in the developing berries that interested the polyphenol metabolism and its regulation during development and under stress. Implications are discussed below.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Reisch, Bruce, Pinhas Spiegel-Roy, Norman Weeden, Gozal Ben-Hayyim y Jacques Beckmann. Genetic Analysis in vitis Using Molecular Markers. United States Department of Agriculture, abril de 1995. http://dx.doi.org/10.32747/1995.7613014.bard.

Texto completo
Resumen
Genetic analysis and mapping in grapes has been difficult because of the long generation period and paucity of genetic markers. In the present work, chromosome linkage maps were developed with RAPD, RFLP and isozyme loci in interspecific hybrid cultivars, and RAPD markers were produced in a V. vinifera population. In three cultivars, there were 19 linkage groups as expected for a species with 38 somatic chromosomes. These maps were used to locate chromosome regions with linkages to important genes, including those influencing powdery mildew and botrytis bunch rot resistance; flower sex; and berry shape. In V. vinifera, the occurrence of specific markers was correlated with seedlessness, muscat flavor and fruit color. Polymorphic RAPD bands included single copy as well as repetitive DNA. Mapping procedures were improved by optimizing PCR parameters with grape DNA; by the development of an efficient DNA extraction protocol; and with the use of long (17- to 24-mer) primers which amplify more polymorphic loci per primer. DNA fingerprint analysis with RAPD markers indicated that vinifera cultivars could be separated readily with RAPD profiles. Pinot gris, thought to be a sort of Pinot noir, differed by 12 bands from Pinot noir. This suggests that while Pinot gris may be related to Pinot noir, it is not likely to be a clone. The techniques developed in this project are now being further refined to use marker-assisted selection in breeding programs for the early selection of elite seedlings. Furthermore, the stage has been set for future attempts to clone genes from grapes based upon map locations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lichter, Amnon, Joseph L. Smilanick, Dennis A. Margosan y Susan Lurie. Ethanol for postharvest decay control of table grapes: application and mode of action. United States Department of Agriculture, julio de 2005. http://dx.doi.org/10.32747/2005.7587217.bard.

Texto completo
Resumen
Original objectives: Dipping of table grapes in ethanol was determined to be an effective measure to control postharvest gray mold infection caused by Botrytis cinerea. Our objectives were to study the effects of ethanol on B.cinerea and table grapes and to conduct research that will facilitate the implementation of this treatment. Background: Botrytis cinerea is known as the major pathogen of table grapes in cold storage. To date, the only commercial technology to control it relied on sulfur dioxide (SO₂) implemented by either fumigation of storage facilities or from slow release generator pads which are positioned directly over the fruits. This treatment is very effective but it has several drawbacks such as aftertaste, bleaching and hypersensitivity to humans which took it out of the GRAS list of compounds and warranted further seek for alternatives. Prior to this research ethanol was shown to control several pathogens in different commodities including table grapes and B. cinerea. Hence it seemed to be a simple and promising technology which could offer a true alternative for storage of table grapes. Further research was however required to answer some practical and theoretical questions which remained unanswered. Major conclusions, solutions, achievements: In this research project we have shown convincingly that 30% ethanol is sufficient to prevent germination of B. cinerea and kill the spores. In a comparative study it was shown that Alternaria alternata is also rather sensitive but Rhizopus stolonifer and Aspergillus niger are less sensitive to ethanol. Consequently, ethanol protected the grapes from decay but did not have a significant effect on occurrence of mycotoxigenic Aspergillus species which are present on the surface of the berry. B. cinerea responded to ethanol or heat treatments by inducing sporulation and transient expression of the heat shock protein HSP104. Similar responses were not detected in grape berries. It was also shown that application of ethanol to berries did not induce subsequent resistance and actually the berries were slightly more susceptible to infection. The heat dose required to kill the spores was determined and it was proven that a combination of heat and ethanol allowed reduction of both the ethanol and heat dose. Ethanol and heat did not reduce the amount or appearance of the wax layers which are an essential component of the external protection of the berry. The ethanol and acetaldehyde content increased after treatment and during storage but the content was much lower than the natural ethanol content in other fruits. The efficacy of ethanol applied before harvest was similar to that of the biological control agent, Metschnikowia fructicola, Finally, the performance of ethanol could be improved synergistically by packaging the bunches in modified atmosphere films which prevent the accumulation of free water. Implications, both scientific and agricultural: It was shown that the major mode of action of ethanol is mediated by its lethal effect on fungal inoculum. Because ethanol acts mainly on the cell membranes, it was possible to enhance its effect by lowering the concentration and elevating the temperature of the treatment. Another important development was the continuous protection of the treated bunches by modified atmosphere that can solve the problem of secondary or internal infection. From the practical standpoint, a variety of means were offered to enhance the effect of the treatment and to offer a viable alternative to SO2 which could be instantly adopted by the industry with a special benefit to growers of organic grapes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía