Literatura académica sobre el tema "Glycoside de flavanone amers"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Glycoside de flavanone amers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Glycoside de flavanone amers"

1

Lewinsohn, Efraim, Lothar Britsch, Yehuda Mazur y Jonathan Gressel. "Flavanone Glycoside Biosynthesis in Citrus". Plant Physiology 91, n.º 4 (1 de diciembre de 1989): 1323–28. http://dx.doi.org/10.1104/pp.91.4.1323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Aquino, Rita, M. Letizia Ciavatta, Francesco De Simone y Cosimo Pizza. "A flavanone glycoside from Hamelia patens". Phytochemistry 29, n.º 7 (enero de 1990): 2359–60. http://dx.doi.org/10.1016/0031-9422(90)83076-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Takahashi, Hironobu, Sachiyo Hirata, Hiroyuki Minami y Yoshiyasu Fukuyama. "Triterpene and flavanone glycoside from Rhododendron simsii". Phytochemistry 56, n.º 8 (abril de 2001): 875–79. http://dx.doi.org/10.1016/s0031-9422(00)00493-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Intekhab, Javed, Mohammad Aslam, Vivek Bhadauria y Preeti Singh. "A new flavanone glycoside from Clausena pentaphylla". Chemistry of Natural Compounds 48, n.º 4 (septiembre de 2012): 568–69. http://dx.doi.org/10.1007/s10600-012-0312-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chen, R. C., G. B. Sun, J. Wang, H. J. Zhang y X. B. Sun. "Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway". Food & Function 6, n.º 4 (2015): 1331–44. http://dx.doi.org/10.1039/c4fo01164c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jangwan, J. S. y R. P. Bahuguna. "Puddumin-B, a New Flavanone Glycoside fromPrunus cerasoides". International Journal of Crude Drug Research 27, n.º 4 (enero de 1989): 223–26. http://dx.doi.org/10.3109/13880208909116906.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zou, Wei, Yonggang Wang, Haibin Liu, Yulong Luo, Si Chen y Weiwei Su. "Melitidin: A Flavanone Glycoside from Citrus grandis ‘Tomentosa’". Natural Product Communications 8, n.º 4 (abril de 2013): 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800411.

Texto completo
Resumen
Citrus grandis ‘Tomentosa’ is a traditional Chinese medicine, used as an antitussive. In this research, melitidin, a flavanone glycoside, was isolated from this species for the first time by using chromatographic methods. The structure was confirmed through comprehensive analyses of its ultraviolet, infrared, 1H and 13C NMR, HMBC and HMQC spectroscopic and high-resolution mass spectrometric data. Meliditin showed a good antitussive effect on cough induced by citric acid in Guinea pig, suggesting that it was a contributor to the antitussive effect of C. grandis ‘Tomentosa’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Diao, Shengbao, Mei Jin, Chun Shi Jin, Cheng-Xi Wei, Jinfeng Sun, Wei Zhou y Gao Li. "A new flavanone glycoside isolated from Tournefortia sibirica". Natural Product Research 33, n.º 20 (22 de diciembre de 2018): 3021–24. http://dx.doi.org/10.1080/14786419.2018.1512995.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chen, Yu-Jie, Guo-Yong Xie, Guang-Kai Xu, Yi-Qun Dai, Lu Shi y Min-Jian Qin. "Chemical Constituents of Pyrrosia calvata". Natural Product Communications 10, n.º 7 (julio de 2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000714.

Texto completo
Resumen
A novel flavanone glycoside, 3′,5′,5,7-tetrahydroxy-6- C- β-D-glucopyranosyl-flavanone (1), along with 16 known compounds, ( R/ S)-eriodictyol-8- C- β-D-glucopyranoside (2), quercetin-3- O- α-D-rhamnosyl (1′”→3′”)- β-D-glucopyranoside (3), hemipholin (4), 4 β-carboxymethyl-(-)-epicatechin methyl ester (5), kaempferol (6), quercetin (7), mangiferin (8), chlorogenic acid (9), 1,5- O-dicaffeoylquinic acid (10), 3,5- O-dicaffeoylquinic acid (11), 3- O-caffeoylquinic acid methyl ester (12), 1- O-caffeoyl glycoside (13), 4- O- β-D-glucopyranosyl-caffeic acid (14), 3′- O-methyleplcatechin-7- O- β-D-glucopyranoside (15), hop-22(29)-en-30-ol (16) and diploptene (17), were isolated from the whole plant of Pyrrosia calvata (Backer) Ching. Among them, compounds 2, 3, 4, 10, 11, 13 and 14 were isolated from the family Polypodiaceae for the first time, and compound 5 has not been recorded previously from the genus Pyrrosia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Okwu, D. E. y F. N. I. Morah. "Isolation and Characterization of Flavanone Glycoside 4I,5, 7-Trihydroxy Flavanone Rhamnoglucose from Garcinia kola Seed". Journal of Applied Sciences 7, n.º 2 (1 de enero de 2007): 306–9. http://dx.doi.org/10.3923/jas.2007.306.309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Glycoside de flavanone amers"

1

Ben, Zid Malek. "Etude de la déshydratation osmotique pour la formulation et la stabilisation d’écorces de bigarades (Citrus aurantium)". Electronic Thesis or Diss., Montpellier, SupAgro, 2016. http://www.theses.fr/2016NSAM0007.

Texto completo
Resumen
L’objectif du présent travail est la modulation de l’amertume des écorces de bigarades par déshydratation osmotique en vue de leur valorisation comme produits alimentaires. Les traitements envisagés à cet effet sont la déshydratation-imprégnation par immersion dans des solutions de saccharose (DII) (60 °Brix -50 °C, 60 °Brix- 25 °C, 40 °Brix- 25 °C, 6h) et la déshydratation osmotique à sec (DS) (saccharose en poudre-25 °C, 6h). Deux modes de blanchiment sont également mis en œuvre afin d’améliorer les performances de la déshydratation osmotique : le blanchiment à la vapeur (100 °C, 5 min) et le blanchiment à l’eau (85 °C-60 min et 95 °C-10 min). Les couplages issus de la combinaison entre les prétraitements thermiques et les traitements osmotiques sont VDII, EDII, VDS, EDS avec V : (blanchiment à la vapeur - 5 min), E : (blanchiment dans l’eau à 95 °C - 6 min), DII : (25 °C-60 °Brix- 4h) et DS : (25 °C- saccharose en poudre- 4h). L’étude des transferts de matières y compris les composés amers repose sur une approche cinétique. L’analyse quantitative de ces composés est réalisée par chromatographie phase liquide. Un examen microscopique des produits blanchis et déshydratés osmotiquement a été également mis en œuvre afin d’évaluer leur porosité. Le profil sensoriel des écorces obtenues par différents traitements osmotiques (DS, VDS, EDS, DII, VDII, EDII) est établi afin de discriminer les différences entre produits et contrôler l’efficacité de chaque traitement sur la modulation de l’amertume. Cette étude a permis d’identifier trois glycosides de flavanones amers majoritairement présents dans les écorces de bigarades : la naringine, la néohespéridine et la néoériocitrine. La porosité élevée des écorces de bigarades estimée à 0,43 favorise le phénomène d’imbibition en liquide externe au cours du blanchiment à l’eau et au cours de la DII dans les solutions à faible concentration (40 °Brix). Ce phénomène est également observé pendant la première heure de la DII dans les solutions à forte concentration en sucre (60 °Brix). Des pertes significatives en composés amers sont notées au cours du blanchiment à l’eau et aussi au cours des traitements osmotiques. Ce résultat intéressant montre que la déshydratation osmotique permet non seulement d’édulcorer les écorces mais encore elle permet d’éliminer une partie des composés amers. Cependant, les pertes qui découlent de la DII sont plus importantes que celles obtenues par DS. Le blanchiment à la vapeur, par ailleurs, n’a pas d’effet sur les flavanones amères. D’un autre côté, il s’avère que les deux modes de blanchiment accélèrent et augmentent les pertes en eau. Par ailleurs, seul le blanchiment à l’eau permet d’accroitre les gains en sucre au cours de la DII et la DS. Les pertes en composés amers sont favorisées par les deux modes de blanchiment mais elles sont plus importantes au cours du blanchiment à l’eau. Les résultats de l’évaluation sensorielle révèlent une différence significative entre les produits. Les écorces les plus appréciées sont les écorces les plus sucrées qui présentent et un goût amer faible. Ces écorces sont uniquement obtenues par couplage des traitements osmotiques (DS et DII) au blanchiment à l’eau
The main objective of this study is to modulate the excessive bitterness of bitter orange peels using the technique of osmotic dehydration. The examined treatments are the dehydration-impregnation by soaking in sucrose solutions (DII) (60 ° Brix -50 ° C, 60 ° Brix- 25 ° C, 40 ° Brix- 25 ° C, 6h) and the dry osmotic dehydration (DS) (granulated sucrose -25 ° C, 6 h). Two blanching methods are also investigated in order to improve the performance of the osmotic dehydration: steam blanching (100 ° C, 5 min) and water blanching (85 ° C-60 min and 95 ° C-10 min). The blanching-osmotic dehydration combined treatments are VDII, EDII, VDS, EDS where V: (steam blanching - 5 min), E: (water blanching at 95 ° C - 6 min ), DII: (25 ° C-60 ° Brix- 4h) and DS (25 ° C granulated sucrose -4h). The study of the mass transfers including bitter compounds is based on a kinetic approach. The quantitative analysis of these compounds is carried out with high-performance liquid chromatography. Microscopic examination of blanched and osmotically dehydrated peels was performed to evaluate their porosity. The sensory profile of peels obtained by different osmotic treatments (DS, VDS, EDS, DII, VDII, EDII) was established in order to distinguish the differences between products and to control the effectiveness of each treatment on bitterness modulation. The main bitter flavanone glycosides identified in the peels are neoeriocitrin, naringin, and neohesperidin with predominance of the last two compounds. The high porosity of the peels (0.43 (0.06)) promotes the imbibition of external liquid during water blanching and during DII in low concentrated solutions (40 ° Brix). This phenomenon was also observed during the first hour of the DII in high sugar concentrated solutions (60° Brix). Significant losses of bitter compounds are noted during water blanching and also during osmotic treatments. This interesting result shows that the osmotic dehydration could modulate the bitterness of the peels either by promoting sugar uptake or flavanones glycosides loss. However, the DIi elicited higher loss of bitter compounds than DS. By contrast, the steam blanching showed good retention of bitter compounds. Both blanching methods accelerate and increase water loss. However, only water blanching increases sugar gains during DII and DS treatments. Losses of bitter compounds are increased either by steam or blanching water, but the latter gave rise to much higher losses than the former. The results of sensory evaluation showed significant differences between the products. Coupling water blanching to either DS or DII treatments yielded to high sweetened peels with low bitter taste intensity. These products are the most appreciated ones
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía