Artículos de revistas sobre el tema "Glial scar formation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Glial scar formation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Perez-Gianmarco, Lucila y Maria Kukley. "Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury". Cells 12, n.º 14 (13 de julio de 2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Texto completoNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis y Stefano Pluchino. "The role of neural stem cells in regulating glial scar formation and repair". Cell and Tissue Research 387, n.º 3 (25 de noviembre de 2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Texto completoBao, Yi, Luye Qin, Eunhee Kim, Sangram Bhosle, Hengchang Guo, Maria Febbraio, Renee E. Haskew-Layton, Rajiv Ratan y Sunghee Cho. "CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation". Journal of Cerebral Blood Flow & Metabolism 32, n.º 8 (18 de abril de 2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Texto completoZHANG, H., K. UCHIMURA y K. KADOMATSU. "Brain Keratan Sulfate and Glial Scar Formation". Annals of the New York Academy of Sciences 1086, n.º 1 (1 de noviembre de 2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Texto completoRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, Hiromi Kumamaru, Satoshi Kawase, Matthieu Baudoux, Toshiki Ishibashi et al. "Regulation of RhoA by STAT3 coordinates glial scar formation". Journal of Cell Biology 216, n.º 8 (22 de junio de 2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Texto completoGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, Tjoson Tjoa, Nino Maida, Zena Werb y Linda J. Noble-Haeusslein. "Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing". Journal of Neurosurgery: Spine 99, n.º 2 (septiembre de 2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Texto completoHu, Rong, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian et al. "Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury". Journal of Neurosurgery: Spine 13, n.º 2 (agosto de 2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Texto completoConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh y Jan M. Schwab. "Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells". Journal of Neurosurgery: Spine 2, n.º 3 (marzo de 2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Texto completoChen, Xuning y Weiping Zhu. "A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury". Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Texto completoGraboviy, O. M., T. S. Mervinsky, S. I. Savosko y L. M. Yaremenko. "Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application". Reports of Morphology 30, n.º 3 (19 de septiembre de 2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Texto completoChung, Joonho, Moon Hang Kim, Yong Je Yoon, Kil Hwan Kim, So Ra Park y Byung Hyune Choi. "Effects of granulocyte colony–stimulating factor and granulocyte-macrophage colony–stimulating factor on glial scar formation after spinal cord injury in rats". Journal of Neurosurgery: Spine 21, n.º 6 (diciembre de 2014): 966–73. http://dx.doi.org/10.3171/2014.8.spine131090.
Texto completoOnodera, Junya, Yuji Ikegaya y Ryuta Koyama. "Involvement of microglial TRPV4 on glial scar formation". Proceedings for Annual Meeting of The Japanese Pharmacological Society 95 (2022): 1—P—020. http://dx.doi.org/10.1254/jpssuppl.95.0_1-p-020.
Texto completoSutin, Jerome y Ronald Griffith. "β-Adrenergic Receptor Blockade Suppresses Glial Scar Formation". Experimental Neurology 120, n.º 2 (abril de 1993): 214–22. http://dx.doi.org/10.1006/exnr.1993.1056.
Texto completoRooney, Gemma E., Toshiki Endo, Syed Ameenuddin, Bingkun Chen, Sandeep Vaishya, LouAnn Gross, Terry K. Schiefer et al. "Importance of the vasculature in cyst formation after spinal cord injury". Journal of Neurosurgery: Spine 11, n.º 4 (octubre de 2009): 432–37. http://dx.doi.org/10.3171/2009.4.spine08784.
Texto completoClifford, Tanner, Zachary Finkel, Brianna Rodriguez, Adelina Joseph y Li Cai. "Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration". Cells 12, n.º 6 (9 de marzo de 2023): 853. http://dx.doi.org/10.3390/cells12060853.
Texto completoLiu, Jingzhou, Xin Xin, Jiejie Sun, Yueyue Fan, Xun Zhou, Wei Gong, Meiyan Yang et al. "Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury". Neural Regeneration Research 19, n.º 3 (20 de julio de 2023): 629–35. http://dx.doi.org/10.4103/1673-5374.380907.
Texto completoSofroniew, Michael V. "Molecular dissection of reactive astrogliosis and glial scar formation". Trends in Neurosciences 32, n.º 12 (diciembre de 2009): 638–47. http://dx.doi.org/10.1016/j.tins.2009.08.002.
Texto completoWang, Haijun, Guobin Song, Haoyu Chuang, Chengdi Chiu, Ahmed Abdelmaksoud, Youfan Ye y Lei Zhao. "Portrait of glial scar in neurological diseases". International Journal of Immunopathology and Pharmacology 31 (enero de 2018): 205873841880140. http://dx.doi.org/10.1177/2058738418801406.
Texto completoKorte, G. E., M. Marko y G. Hageman. "High-voltage electron microscopy of subretinal scar formation". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 486–87. http://dx.doi.org/10.1017/s0424820100122836.
Texto completoRodriguez-Grande, Beatriz, Matimba Swana, Loan Nguyen, Pavlos Englezou, Samaneh Maysami, Stuart M. Allan, Nancy J. Rothwell, Cecilia Garlanda, Adam Denes y Emmanuel Pinteaux. "The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury". Journal of Cerebral Blood Flow & Metabolism 34, n.º 3 (18 de diciembre de 2013): 480–88. http://dx.doi.org/10.1038/jcbfm.2013.224.
Texto completoCarvalho, Juliana Casanovas de, César Augusto Abreu-Pereira, Lucas Cauê da Silva Assunção, Rosana Costa Casanovas, Ana Lucia Abreu-Silva y Matheus Levi Tajra Feitosa. "Correlation of Nogo A release with glia scar formation in spinal cord injury". Research, Society and Development 10, n.º 6 (29 de mayo de 2021): e25410615688. http://dx.doi.org/10.33448/rsd-v10i6.15688.
Texto completoLi, Xin, Yan Qian, Wanling Shen, Shiying Zhang, Hui Han, Yu Zhang, Shuangmei Liu, Shaokun Lv y Xiuying Zhang. "Mechanism of SET8 Activates the Nrf2-KEAP1-ARE Signaling Pathway to Promote the Recovery of Motor Function after Spinal Cord Injury". Mediators of Inflammation 2023 (10 de marzo de 2023): 1–13. http://dx.doi.org/10.1155/2023/4420592.
Texto completoBadan, I., B. Buchhold, A. Hamm, M. Gratz, L. C. Walker, D. Platt, Ch Kessler y A. Popa-Wagner. "Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery". Journal of Cerebral Blood Flow & Metabolism 23, n.º 7 (julio de 2003): 845–54. http://dx.doi.org/10.1097/01.wcb.0000071883.63724.a7.
Texto completoPekny, Milos, Clas B. Johansson, Camilla Eliasson, Josefina Stakeberg, Åsa Wallén, Thomas Perlmann, Urban Lendahl, Christer Betsholtz, Claes-Henric Berthold y Jonas Frisén. "Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin". Journal of Cell Biology 145, n.º 3 (3 de mayo de 1999): 503–14. http://dx.doi.org/10.1083/jcb.145.3.503.
Texto completoWiemann, Susanne, Jacqueline Reinhard y Andreas Faissner. "Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation". Biochemical Society Transactions 47, n.º 6 (17 de diciembre de 2019): 1651–60. http://dx.doi.org/10.1042/bst20190081.
Texto completoHuang, Lijie, Zhe-Bao Wu, Qichuan ZhuGe, WeiMing Zheng, Bei Shao, Brian Wang, Fen Sun y Kunlin Jin. "Glial Scar Formation Occurs in the Human Brain after Ischemic Stroke". International Journal of Medical Sciences 11, n.º 4 (2014): 344–48. http://dx.doi.org/10.7150/ijms.8140.
Texto completoBeach, Krista M., Jianbo Wang y Deborah C. Otteson. "Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina". Stem Cells International 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/1610691.
Texto completoOtte, Elisabeth, Andreas Vlachos y Maria Asplund. "Engineering strategies towards overcoming bleeding and glial scar formation around neural probes". Cell and Tissue Research 387, n.º 3 (14 de enero de 2022): 461–77. http://dx.doi.org/10.1007/s00441-021-03567-9.
Texto completoLi, Ping, Zhao-Qian Teng y Chang-Mei Liu. "Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury". Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1279051.
Texto completoCloutier, Frank, Ilse Sears-Kraxberger, Krista Keachie y Hans S. Keirstead. "Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis". Clinical and Developmental Immunology 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/812456.
Texto completoSaadoun, S. "Involvement of aquaporin-4 in astroglial cell migration and glial scar formation". Journal of Cell Science 118, n.º 24 (15 de diciembre de 2005): 5691–98. http://dx.doi.org/10.1242/jcs.02680.
Texto completoHsu, J. Y. C., L. Y. W. Bourguignon, C. M. Adams, K. Peyrollier, H. Zhang, T. Fandel, C. L. Cun, Z. Werb y L. J. Noble-Haeusslein. "Matrix Metalloproteinase-9 Facilitates Glial Scar Formation in the Injured Spinal Cord". Journal of Neuroscience 28, n.º 50 (10 de diciembre de 2008): 13467–77. http://dx.doi.org/10.1523/jneurosci.2287-08.2008.
Texto completoLeme, Ricardo José de Almeida y Gerson Chadi. "Distant microglial and astroglial activation secondary to experimental spinal cord lesion". Arquivos de Neuro-Psiquiatria 59, n.º 3A (septiembre de 2001): 483–92. http://dx.doi.org/10.1590/s0004-282x2001000400002.
Texto completoRobel, Stefanie. "Astroglial Scarring and Seizures". Neuroscientist 23, n.º 2 (7 de julio de 2016): 152–68. http://dx.doi.org/10.1177/1073858416645498.
Texto completoYeh, Jue-Zong, Ding-Han Wang, Juin-Hong Cherng, Yi-Wen Wang, Gang-Yi Fan, Nien-Hsien Liou, Jiang-Chuan Liu y Chung-Hsing Chou. "A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury". Polymers 12, n.º 10 (29 de septiembre de 2020): 2245. http://dx.doi.org/10.3390/polym12102245.
Texto completoHayashi, Noriko, Seiji Miyata, Yutaka Kariya, Ryo Takano, Saburo Hara y Kaeko Kamei. "Attenuation of glial scar formation in the injured rat brain by heparin oligosaccharides". Neuroscience Research 49, n.º 1 (mayo de 2004): 19–27. http://dx.doi.org/10.1016/j.neures.2004.01.007.
Texto completoRomero-Ramírez, Lorenzo, Manuel Nieto-Sampedro y MAsunción Barreda-Manso. "All roads go to Salubrinal: endoplasmic reticulum stress, neuroprotection and glial scar formation". Neural Regeneration Research 10, n.º 12 (2015): 1926. http://dx.doi.org/10.4103/1673-5374.169619.
Texto completoZhao, Lina, Xianyu Zhang y Chunhai Zhang. "Methimazole Inhibits the Expression of GFAP and the Migration of Astrocyte in Scratched Wound Model In Vitro". Mediators of Inflammation 2020 (13 de abril de 2020): 1–7. http://dx.doi.org/10.1155/2020/4027470.
Texto completoSong, Byeong Gwan, Su Yeon Kwon, Jae Won Kyung, Eun Ji Roh, Hyemin Choi, Chang Su Lim, Seong Bae An, Seil Sohn y Inbo Han. "Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation". International Journal of Molecular Sciences 23, n.º 11 (1 de junio de 2022): 6218. http://dx.doi.org/10.3390/ijms23116218.
Texto completoSun, Daniel y Tatjana C. Jakobs. "Structural Remodeling of Astrocytes in the Injured CNS". Neuroscientist 18, n.º 6 (7 de octubre de 2011): 567–88. http://dx.doi.org/10.1177/1073858411423441.
Texto completoParry, Phillip V. y Johnathan A. Engh. "Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation". Neurosurgery 70, n.º 6 (junio de 2012): N10—N11. http://dx.doi.org/10.1227/01.neu.0000414941.18107.47.
Texto completoZhu, Yong-Ming, Xue Gao, Yong Ni, Wei Li, Thomas A. Kent, Shi-Gang Qiao, Chen Wang, Xiao-Xuan Xu y Hui-Ling Zhang. "Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia–reperfusion brain injury". Neuroscience 356 (julio de 2017): 125–41. http://dx.doi.org/10.1016/j.neuroscience.2017.05.004.
Texto completoWang, Yu-Fu, Jia-Ning Zu, Jing Li, Chao Chen, Chun-Yang Xi y Jing-Long Yan. "Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation". Neuroscience Letters 560 (febrero de 2014): 51–56. http://dx.doi.org/10.1016/j.neulet.2013.11.050.
Texto completoUesugi, Masafumi, Yoshitoshi Kasuva, Hiroshi Hama, Tomoh Masaki y Katsutoshi Goto. "The Participation of Endogenous ET-1 in Glial Scar formation after Spinal Cord Injury". Japanese Journal of Pharmacology 73 (1997): 112. http://dx.doi.org/10.1016/s0021-5198(19)44953-6.
Texto completoOkuda, Akinori, Noriko Horii-Hayashi, Takayo Sasagawa, Takamasa Shimizu, Hideki Shigematsu, Eiichiro Iwata, Yasuhiko Morimoto et al. "Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats". Journal of Neurosurgery: Spine 26, n.º 3 (marzo de 2017): 388–95. http://dx.doi.org/10.3171/2016.8.spine16250.
Texto completoZhang, Rongyi, Junhua Wang, Qingwen Deng, Xingru Xiao, Xiang Zeng, Biqin Lai, Ge Li et al. "Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord". Neurospine 20, n.º 4 (31 de diciembre de 2023): 1358–79. http://dx.doi.org/10.14245/ns.2346824.412.
Texto completoPasterkamp, R. Jeroen y Joost Verhaagen. "Semaphorins in axon regeneration: developmental guidance molecules gone wrong?" Philosophical Transactions of the Royal Society B: Biological Sciences 361, n.º 1473 (28 de julio de 2006): 1499–511. http://dx.doi.org/10.1098/rstb.2006.1892.
Texto completoZhang, Ce, Jianning Kang, Xiaodi Zhang, Ying Zhang, Nana Huang y Bin Ning. "Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury". Biomedicine & Pharmacotherapy 153 (septiembre de 2022): 113500. http://dx.doi.org/10.1016/j.biopha.2022.113500.
Texto completoLi, Yi, Jian Wu, Zhen-Yu Zhu, Zhi-Wei Fan, Ying Chen y Ri-Yun Yang. "Downregulation of EphB2 by RNA interference attenuates glial/fibrotic scar formation and promotes axon growth". Neural Regeneration Research 17, n.º 2 (2022): 362. http://dx.doi.org/10.4103/1673-5374.317988.
Texto completoTysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp y J. A. Kessler. "Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury". Journal of Neuroscience 28, n.º 14 (2 de abril de 2008): 3814–23. http://dx.doi.org/10.1523/jneurosci.0143-08.2008.
Texto completo