Siga este enlace para ver otros tipos de publicaciones sobre el tema: Giant Magnetoresistance and Hall effect.

Artículos de revistas sobre el tema "Giant Magnetoresistance and Hall effect"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Giant Magnetoresistance and Hall effect".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Huang, Hui, Juanjuan Gu, Ping Ji, et al. "Giant anisotropic magnetoresistance and planar Hall effect in Sr0.06Bi2Se3." Applied Physics Letters 113, no. 22 (2018): 222601. http://dx.doi.org/10.1063/1.5063689.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Budantsev, M. V., A. G. Pogosov, A. E. Plotnikov, A. K. Bakarov, A. I. Toropov, and J. C. Portal. "Giant hysteresis of magnetoresistance in the quantum hall effect regime." JETP Letters 86, no. 4 (2007): 264–67. http://dx.doi.org/10.1134/s0021364007160102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Núñez-Regueiro, J. E., D. Gupta, and A. M. Kadin. "Hall effect and giant magnetoresistance in lanthanum manganite thin films." Journal of Applied Physics 79, no. 8 (1996): 5179. http://dx.doi.org/10.1063/1.361331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wang, Silin, and Junji Gao. "Overview of Magnetic Field Sensor." Journal of Physics: Conference Series 2613, no. 1 (2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.

Texto completo
Resumen
Abstract This article summarizes the commonly used in magnetic sensors Hall sensors, Anisotropic magnetoresistive sensor (AMR), Giant magnetoresistance effect sensor (GMR) and Tunneling magnetoresistance sensor (TMR). The structure and working principle of each sensor are introduced. In addition, some error sources of magnetic sensors and the calibration techniques used are introduced, and some typical application examples of each sensor are introduced.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bobin, S. B., and A. T. Lonchakov. "Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample." JETP Letters 118, no. 7 (2023): 495–501. http://dx.doi.org/10.1134/s0021364023602658.

Texto completo
Resumen
A giant planar Hall effect with an amplitude of about 50 mΩ cm at a temperature of T = 80 K in a magnetic field of 10 T has been detected in an ultra-pure HgSe single crystal sample with an electron density of 5.5 × 1015 cm–3. Its oscillating dependence on the rotation angle of the sample in various magnetic fields has been determined. Attributes (oscillation period, positions of extrema, correlation between the amplitudes of planar Hall and planar longitudinal magnetoresistance) indicate that the planar Hall effect in this nonmagnetic gapless semimetal with an isotropic Fermi surface originat
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Samoilov, A. V., G. Beach, C. C. Fu, N. C. Yeh, and R. P. Vasquez. "Giant spontaneous Hall effect and magnetoresistance in La1−xCaxCoO3 (0.1⩽x⩽0.5)." Journal of Applied Physics 83, no. 11 (1998): 6998–7000. http://dx.doi.org/10.1063/1.367623.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xiong, Peng, Gang Xiao, J. Q. Wang, John Q. Xiao, J. Samuel Jiang, and C. L. Chien. "Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system." Physical Review Letters 69, no. 22 (1992): 3220–23. http://dx.doi.org/10.1103/physrevlett.69.3220.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhang, H., X. Y. Zhu, Y. Xu, et al. "Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet." Journal of Physics: Condensed Matter 34, no. 3 (2021): 034005. http://dx.doi.org/10.1088/1361-648x/ac3102.

Texto completo
Resumen
Abstract We report on systematic temperature- and magnetic field-dependent studies of the EuGa4 binary compound, which crystallizes in a centrosymmetric tetragonal BaAl4-type structure with space group I4/mmm. The electronic properties of EuGa4 single crystals, with an antiferromagnetic (AFM) transition at T N ∼ 16.4 K, were characterized via electrical resistivity and magnetization measurements. A giant nonsaturating magnetoresistance was observed at low temperatures, reaching ∼ 7 × 1 0 4 % at 2 K in a magnetic field of 9 T. In the AFM state, EuGa4 undergoes a series of metamagnetic transitio
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhu, L., X. X. Qu, H. Y. Cheng, and K. L. Yao. "Spin-polarized transport properties of the FeCl2/WSe2/FeCl2 van der Waals heterostructure." Applied Physics Letters 120, no. 20 (2022): 203505. http://dx.doi.org/10.1063/5.0091580.

Texto completo
Resumen
The discovery of the giant magnetoresistance effect has led to the rapid development of spintronics. Although the half-metals can provide a 100% spin polarization rate and significantly improved giant magnetoresistance, the materials with low Curie temperatures present challenges for their use at room temperature. In an attempt to identify the half-metallic material with high Curie temperatures for spintronics, this study investigates a van der Waals heterostructure with vertically integrated FeCl2/WSe2/FeCl2. The spin-polarized transport properties of the device based on the heterostructure s
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Blachowicz, Tomasz, Ilda Kola, Andrea Ehrmann, Karoline Guenther, and Guido Ehrmann. "Magnetic Micro and Nano Sensors for Continuous Health Monitoring." Micro 4, no. 2 (2024): 206–28. http://dx.doi.org/10.3390/micro4020015.

Texto completo
Resumen
Magnetic micro and nano sensors can be used in a broad variety of applications, e.g., for navigation, automotives, smartphones and also for health monitoring. Based on physical effects such as the well-known magnetic induction, the Hall effect, tunnel magnetoresistance and giant magnetoresistance, they can be used to measure positions, flow, pressure and other physical properties. In biomedicine and healthcare, these miniaturized sensors can be either integrated into garments and other wearables, be directed through the body by passive capsules or active micro-robots or be implanted, which usu
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Xu, Yong, Jun Wang, Jun-Feng Liu, and Hu Xu. "Giant magnetoresistance effect due to the tunneling between quantum anomalous Hall edge states." Applied Physics Letters 118, no. 22 (2021): 222401. http://dx.doi.org/10.1063/5.0050224.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Mitani, S., Y. Shintani, S. Ohnuma, and H. Fujimori. "Giant Magnetoresistance and Hall Effect in Fe-Based Metal-Oxide Granular Thin Films." Journal of the Magnetics Society of Japan 21, no. 4_2 (1997): 465–68. http://dx.doi.org/10.3379/jmsjmag.21.465.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Vansweevelt, Rob, Vincent Mortet, Jan D'Haen, et al. "Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes." physica status solidi (a) 208, no. 6 (2011): 1252–58. http://dx.doi.org/10.1002/pssa.201001206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Huang, Dan, Hang Li, Bei Ding, et al. "Plateau-like magnetoresistance and topological Hall effect in Kagome magnets TbCo2 and DyCo2." Applied Physics Letters 121, no. 23 (2022): 232404. http://dx.doi.org/10.1063/5.0111086.

Texto completo
Resumen
Magnetoresistance (MR) and Hall resistivity of TbCo2 and DyCo2 with a Co Kagome lattice were investigated. Apart from giant negative magnetoresistance (MR) at TC, plateau-like MR and a topological Hall effect (THE) are observed at a low magnetic field for each compound below respective TC. The plateau-like MR is attributed to a compensation of negative MR with a ferromagnetically ordered structure of Tb atoms by positive MR with a noncoplanar spin structure of the Co Kagome lattice. The THE is attributed to the noncoplanar spin structure of the Co Kagome lattice only. The MR and the Hall resis
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Yan, J., X. Luo, J. J. Gao, et al. "The giant planar Hall effect and anisotropic magnetoresistance in Dirac node arcs semimetal PtSn4." Journal of Physics: Condensed Matter 32, no. 31 (2020): 315702. http://dx.doi.org/10.1088/1361-648x/ab851f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Granovskii, A. B., A. V. Kalitsov, and F. Brouers. "Field dependence of the anomalous Hall effect coefficient of granular alloys with giant Magnetoresistance." Journal of Experimental and Theoretical Physics Letters 65, no. 6 (1997): 509–13. http://dx.doi.org/10.1134/1.567384.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Kobayashi, Y., K. Muta, and K. Asai. "The Hall effect and thermoelectric power correlated with the giant magnetoresistance in modified FeRh compounds." Journal of Physics: Condensed Matter 13, no. 14 (2001): 3335–46. http://dx.doi.org/10.1088/0953-8984/13/14/308.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zikrillaev, N. F., Kh M. Iliev, G. Kh Mavlonov, S. B. Isamov, and M. Kh Madjitov. "Negative magnetoresistance in silicon doped with manganese." E3S Web of Conferences 401 (2023): 05094. http://dx.doi.org/10.1051/e3sconf/202340105094.

Texto completo
Resumen
Based on the developed low-temperature step-by-step diffusion of impurity manganese atoms, magnetic nanoclusters of manganese atoms were formed in the crystal lattice of silicon with controllable concentration, with specified and reproducible electrophysical parameters. With the help of electron spin resonance, it was proved experimentally that magnetic nanoclusters are formed in p-Si<B,Mn> silicon and consist of four positively charged manganese atoms which are situated in the nearest equivalent inter-nodes around the negatively charged boron atom. Based on the study of electrophysical
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Pal, Ojasvi, Bashab Dey, and Tarun Kanti Ghosh. "Berry curvature induced magnetotransport in 3D noncentrosymmetric metals." Journal of Physics: Condensed Matter 34, no. 2 (2021): 025702. http://dx.doi.org/10.1088/1361-648x/ac2fd4.

Texto completo
Resumen
Abstract We study the magnetoelectric and magnetothermal transport properties of noncentrosymmetric metals using semiclassical Boltzmann transport formalism by incorporating the effects of Berry curvature (BC) and orbital magnetic moment (OMM). These effects impart quadratic-B dependence to the magnetoelectric and magnetothermal conductivities, leading to intriguing phenomena such as planar Hall effect, negative magnetoresistance (MR), planar Nernst effect and negative Seebeck effect. The transport coefficients associated with these effects show the usual oscillatory behavior with respect to t
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ye, Rongli, Tian Gao, Haoyu Li, Xiao Liang, and Guixin Cao. "Anisotropic giant magnetoresistanceand de Hass–van Alphen oscillations in layered topological semimetal crystals." AIP Advances 12, no. 4 (2022): 045104. http://dx.doi.org/10.1063/5.0086414.

Texto completo
Resumen
Here, we report an anisotropic giant magnetoresistance (GMR) effect and de Hass–van Alphen (dHvA) oscillation phenomena in nominal TaNiTe5 single crystals. TaNiTe5 exhibits the GMR effect with the maximum value of ∼3 × 103% at T = 1.7 K and B = 31 T, with no sign of saturation. The two-band model fitting of Hall resistivity indicates that the anomalous GMR effect was derived from the coexistence of electron and hole carriers. When the external magnetic field is applied to the electron–hole resonance, the GMR effect is enhanced. The dHvA oscillation data at multiple frequencies reveal the topol
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kobayashi, Y., H. Sato, Y. Aoki, and A. Kamijo. "The giant magnetoresistance and the anomalous Hall effect in molecular-beam-epitaxy grown Co/Cu superlattices." Journal of Physics: Condensed Matter 6, no. 36 (1994): 7255–67. http://dx.doi.org/10.1088/0953-8984/6/36/010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Xiao, G., J. Q. Wang, and P. Xiong. "Giant magnetoresistance and anomalous Hall effect in Co-Ag and Fe-Cu, Ag, Au, Pt granular alloys." IEEE Transactions on Magnetics 29, no. 6 (1993): 2694–99. http://dx.doi.org/10.1109/20.280938.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Murzin, Dmitry, Desmond J. Mapps, Kateryna Levada, et al. "Ultrasensitive Magnetic Field Sensors for Biomedical Applications." Sensors 20, no. 6 (2020): 1569. http://dx.doi.org/10.3390/s20061569.

Texto completo
Resumen
The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise reduction or overall design improvement in order to make them smaller and cheaper while keeping the required values of a limit of detection. One of the cutting-edge topics today is the use of magnetic field sensors for applications such as magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-care devices. This introductory review focuses on modern magnetic field sensors suitable for biomedicine applications from a physica
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Djamal, Mitra, and Ramli. "Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method." Advanced Materials Research 770 (September 2013): 1–9. http://dx.doi.org/10.4028/www.scientific.net/amr.770.1.

Texto completo
Resumen
In recent decades, a new magnetic sensor based on magnetoresistance effect is highly researched and developed intensively. GMR material has great potential as next generation magnetic field sensing devices. It has also good magnetic and electric properties, and high potential to be developed into various applications of electronic devices such as: magnetic field sensor, current measurements, linear and rotational position sensor, data storage, head recording, and non-volatile magnetic random access memory. GMR material can be developed to be solid state magnetic sensors that are widely used in
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Huy, Ho Hoang, Julian Sasaki, Nguyen Huynh Duy Khang, et al. "Large inverse spin Hall effect in BiSb topological insulator for 4 Tb/in2 magnetic recording technology." Applied Physics Letters 122, no. 5 (2023): 052401. http://dx.doi.org/10.1063/5.0135831.

Texto completo
Resumen
It is technically challenging to shrink the size of a tunneling magnetoresistance reader to below 20 nm for magnetic recording technology beyond 4 Tb/in2 due to its complex film stack. Recently, we proposed a reader architecture based on the inverse spin Hall effect to resolve those challenges, referred below as spin–orbit torque (SOT) reader, whose structure consists of a SOT layer and a ferromagnetic layer. However, the heavy metal-based SOT reader has small output voltage and low signal-to-noise ratio (SNR) due to the limited spin Hall angle θSH (< 1) of heavy metals. In this Letter, we
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Panda, S. N., S. Mondal, J. Sinha, S. Choudhury та A. Barman. "All-optical detection of interfacial spin transparency from spin pumping in β-Ta/CoFeB thin films". Science Advances 5, № 4 (2019): eaav7200. http://dx.doi.org/10.1126/sciadv.aav7200.

Texto completo
Resumen
Generation and utilization of pure spin current have revolutionized energy-efficient spintronic devices. Spin pumping effect generates pure spin current, and for its increased efficiency, spin-mixing conductance and interfacial spin transparency are imperative. The plethora of reports available on generation of spin current with giant magnitude overlook the interfacial spin transparency. Here, we investigate spin pumping in β-Ta/CoFeB thin films by an all-optical time-resolved magneto-optical Kerr effect technique. From variation of Gilbert damping with Ta and CoFeB thicknesses, we extract the
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Shu, Yu, Dongli Yu, Wentao Hu, et al. "Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth." Proceedings of the National Academy of Sciences 114, no. 13 (2017): 3375–80. http://dx.doi.org/10.1073/pnas.1615874114.

Texto completo
Resumen
As an archetypal semimetal with complex and anisotropic Fermi surface and unusual electric properties (e.g., high electrical resistance, large magnetoresistance, and giant Hall effect), bismuth (Bi) has played a critical role in metal physics. In general, Bi displays diamagnetism with a high volumetric susceptibility (∼10−4). Here, we report unusual ferromagnetism in bulk Bi samples recovered from a molten state at pressures of 1.4–2.5 GPa and temperatures above ∼1,250 K. The ferromagnetism is associated with a surprising structural memory effect in the molten state. On heating, low-temperatur
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Barla, Prashanth, Vinod Kumar Joshi, and Somashekara Bhat. "Spintronic devices: a promising alternative to CMOS devices." Journal of Computational Electronics 20, no. 2 (2021): 805–37. http://dx.doi.org/10.1007/s10825-020-01648-6.

Texto completo
Resumen
AbstractThe field of spintronics has attracted tremendous attention recently owing to its ability to offer a solution for the present-day problem of increased power dissipation in electronic circuits while scaling down the technology. Spintronic-based structures utilize electron’s spin degree of freedom, which makes it unique with zero standby leakage, low power consumption, infinite endurance, a good read and write performance, nonvolatile nature, and easy 3D integration capability with the present-day electronic circuits based on CMOS technology. All these advantages have catapulted the aggr
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Monteblanco, Elmer, Christian Ortiz Pauyac, Williams Savero, J. Carlos RojasSanchez, and A. Schuhl. "ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS." Revista Cientifica TECNIA 23, no. 1 (2017): 5. http://dx.doi.org/10.21754/tecnia.v23i1.62.

Texto completo
Resumen
En la actualidad el desarrollo de la tecnología nos ha conducido a elaborar dispositivos nanométricos capaces de almacenar y procesar información. Estos dispositivos serían difíciles de imaginar en la electrónica, la cual se basa en la manipulación de la carga eléctrica del electrón. Sin embargo, gracias a los avances en la física teórica y experimental en el campo de la materia condensada, estos dispositivos ya son una realidad, perteneciendo a lo que actualmente se denomina la electrónica del espín o espintrónica, la cual basa su funcionalidad en el control del espín del electrón, una propie
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Wen, Zhenchao, Takahide Kubota, Tatsuya Yamamoto, and Koki Takanashi. "Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers." Applied Physics Letters 108, no. 23 (2016): 232406. http://dx.doi.org/10.1063/1.4953403.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Yurasov, A. N., and M. M. Yashin. "Accounting for the influence of granule size distribution in nanocomposites." Russian Technological Journal 8, no. 2 (2020): 59–66. http://dx.doi.org/10.32362/2500-316x-2020-8-2-59-66.

Texto completo
Resumen
This paper discusses the effect of the distribution of the granules size in nanocomposites on physical properties within the framework of the quasi-classical size effect. Methods of effective medium for describing nanocomposites are discussed. This paper also notes and discusses the contribution of various mechanisms that affect the optical and magneto-optical properties of such structures, especially in the IR region of the spectrum, where the quasi-classical dimensional effect is most pronounced. The Droude-Lorentz mode describes the contribution of the dimensional effect to the diagonal and
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Huang, Hai, Anmin Zheng, Guoying Gao, and Kailun Yao. "Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron." Journal of Magnetism and Magnetic Materials 449 (March 2018): 522–29. http://dx.doi.org/10.1016/j.jmmm.2017.10.087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Ritter, Clemens. "Neutrons Not Entitled to Retire at the Age of 60: More than Ever Needed to Reveal Magnetic Structures." Solid State Phenomena 170 (April 2011): 263–69. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.263.

Texto completo
Resumen
In 1949 Shull et al. [1] used for the first time neutrons for the determination of a magnetic structure. Ever since, the need for neutrons for the study of magnetism has increased. Two main reasons can be brought forward to explain this ongoing success: First of all a strong rise in research on functional materials (founding obliges) and secondly the increasing availability of easy to use programmes for the treatment of magnetic neutron diffraction data. The giant magnetoresistance effect, multiferroic materials, magnetoelasticity, magnetic shape memory alloys, magnetocaloric materials, high t
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

MAJUMDAR, SAYANI, SUKUMAR DEY, HANNU HUHTINEN, et al. "COMPARATIVE STUDY OF SPIN INJECTION AND TRANSPORT IN Alq3 AND Co–PHTHALOCYANINE-BASED ORGANIC SPIN VALVES." SPIN 04, no. 02 (2014): 1440009. http://dx.doi.org/10.1142/s2010324714400098.

Texto completo
Resumen
Recent experimental reports suggest the formation of a highly spin-polarized interface ("spinterface") between a ferromagnetic (FM) Cobalt ( Co ) electrode and a metal-phthalocyanine (Pc) molecule. Another report shows an almost 60% giant magnetoresistance (GMR) response measured on Co / H 2 Pc -based single molecule spin valves. In this paper, we compare the spin injection and transport properties of organic spin valves with two different organic spacers, namely Tris(8-hydroxyquinolinato) aluminum ( Alq 3) and CoPc sandwiched between half-metallic La 0.7 Sr 0.3 MnO 3 (LSMO) and Co electrodes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Jung, Myung-Hwa, Jon M. Lawrence, Takao Ebihara, Michael F. Hundley, and Alex H. Lacerda. "Hall effect and magnetoresistance of YbAl3." Physica B: Condensed Matter 312-313 (March 2002): 354–55. http://dx.doi.org/10.1016/s0921-4526(01)01120-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Vanacken, J., E. Haanappel, S. Stroobants, et al. "Hall effect and magnetoresistance of La1.875Sr0.125CuO4." Physica B: Condensed Matter 346-347 (April 2004): 334–38. http://dx.doi.org/10.1016/j.physb.2004.01.101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Neubauer, A., C. Pfleiderer, R. Ritz, P. G. Niklowitz, and P. Böni. "Hall effect and magnetoresistance in MnSi." Physica B: Condensed Matter 404, no. 19 (2009): 3163–66. http://dx.doi.org/10.1016/j.physb.2009.07.055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Diehl, J., H. Fischer, R. Köhler, et al. "Hall effect and magnetoresistance in UNiSn." Physica B: Condensed Matter 186-188 (May 1993): 708–10. http://dx.doi.org/10.1016/0921-4526(93)90680-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kar’kin, A. E., D. A. Shulyatev, A. A. Arsenov, V. A. Cherepanov, and E. A. Filonova. "Magnetoresistance and Hall effect in La0.8Sr0.2MnO3." Journal of Experimental and Theoretical Physics 89, no. 2 (1999): 358–65. http://dx.doi.org/10.1134/1.558992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Seng, P., J. Diehl, S. Klimm та ін. "Hall effect and magnetoresistance inNd1.85Ce0.15CuO4−δfilms". Physical Review B 52, № 5 (1995): 3071–74. http://dx.doi.org/10.1103/physrevb.52.3071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Flouda, E., and C. Papastaikoudis. "Hall Effect and Magnetoresistance in PdHxFilms*." Zeitschrift für Physikalische Chemie 181, Part_1_2 (1993): 359–66. http://dx.doi.org/10.1524/zpch.1993.181.part_1_2.359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Kakihana, Masashi, Dai Aoki, Ai Nakamura, et al. "Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi." Journal of the Physical Society of Japan 87, no. 2 (2018): 023701. http://dx.doi.org/10.7566/jpsj.87.023701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Jimbo, M., T. Kariya, R. Imada, Y. Fujiwara, and S. Tsunashima. "Giant magnetoresistance effect in Fe56Co30Ni14/Cu." Journal of Magnetism and Magnetic Materials 165, no. 1-3 (1997): 304–7. http://dx.doi.org/10.1016/s0304-8853(96)00536-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Duy Khang, Nguyen Huynh, and Pham Nam Hai. "Giant unidirectional spin Hall magnetoresistance in topological insulator – ferromagnetic semiconductor heterostructures." Journal of Applied Physics 126, no. 23 (2019): 233903. http://dx.doi.org/10.1063/1.5134728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Schewe, Phil F. "The giant planar Hall effect." Physics Today 56, no. 5 (2003): 9. http://dx.doi.org/10.1063/1.2409967.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Briane, Marc, and Graeme W. Milton. "Giant Hall Effect in Composites." Multiscale Modeling & Simulation 7, no. 3 (2009): 1405–27. http://dx.doi.org/10.1137/08073189x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Constantinian K. Y., Ovsyannikov G. A., Shadrin A. V., et al. "Spin magnetoresistance of a strontium iridate/manganite heterostructure." Physics of the Solid State 64, no. 10 (2022): 1410. http://dx.doi.org/10.21883/pss.2022.10.54227.46hh.

Texto completo
Resumen
The results of the angular dependences of the magnetoresistance of the SrIrO3/La0.7Sr0.3MnO3 heterostructure made of oxide thin films epitaxially grown on a NdGaO3 substrate are presented and discussed. The resistance of the heterostructure was measured in configuration of planar Hall effect with magnetic field applied in parallel making possible to estimate the spin-Hall angle. The contribution of the anisotropic magnetoresistance and the spin-Hall magnetoresistance occurred due to strong spin-orbit interaction in the SrIrO3 film were evaluated. Keywords: strontium iridate, spin-orbit interac
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sekiguchi, K., M. Shimizu, E. Saitoh, and H. Miyajima. "Giant Magnetoresistance Effect in Ferromagnetic Ni Nanowires." Journal of the Magnetics Society of Japan 29, no. 3 (2005): 261–64. http://dx.doi.org/10.3379/jmsjmag.29.261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Rinkevich, A. B., M. A. Milyaev, L. N. Romashev, and D. V. Perov. "Microwave Giant Magnetoresistance Effect in Metallic Nanostructures." Physics of Metals and Metallography 119, no. 13 (2018): 1297–300. http://dx.doi.org/10.1134/s0031918x18130100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Burkett, S. L. "Effect of silicon processing on giant magnetoresistance." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 4 (1996): 3131. http://dx.doi.org/10.1116/1.589075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!