Literatura académica sobre el tema "Giant Magnetoresistance and Hall effect"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Giant Magnetoresistance and Hall effect".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Giant Magnetoresistance and Hall effect"
Huang, Hui, Juanjuan Gu, Ping Ji, Qinglong Wang, Xueyou Hu, Yongliang Qin, Jingrong Wang y Changjin Zhang. "Giant anisotropic magnetoresistance and planar Hall effect in Sr0.06Bi2Se3". Applied Physics Letters 113, n.º 22 (26 de noviembre de 2018): 222601. http://dx.doi.org/10.1063/1.5063689.
Texto completoBudantsev, M. V., A. G. Pogosov, A. E. Plotnikov, A. K. Bakarov, A. I. Toropov y J. C. Portal. "Giant hysteresis of magnetoresistance in the quantum hall effect regime". JETP Letters 86, n.º 4 (octubre de 2007): 264–67. http://dx.doi.org/10.1134/s0021364007160102.
Texto completoNúñez-Regueiro, J. E., D. Gupta y A. M. Kadin. "Hall effect and giant magnetoresistance in lanthanum manganite thin films". Journal of Applied Physics 79, n.º 8 (1996): 5179. http://dx.doi.org/10.1063/1.361331.
Texto completoWang, Silin y Junji Gao. "Overview of Magnetic Field Sensor". Journal of Physics: Conference Series 2613, n.º 1 (1 de octubre de 2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.
Texto completoBobin, S. B. y A. T. Lonchakov. "Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample". JETP Letters 118, n.º 7 (octubre de 2023): 495–501. http://dx.doi.org/10.1134/s0021364023602658.
Texto completoSamoilov, A. V., G. Beach, C. C. Fu, N. C. Yeh y R. P. Vasquez. "Giant spontaneous Hall effect and magnetoresistance in La1−xCaxCoO3 (0.1⩽x⩽0.5)". Journal of Applied Physics 83, n.º 11 (junio de 1998): 6998–7000. http://dx.doi.org/10.1063/1.367623.
Texto completoXiong, Peng, Gang Xiao, J. Q. Wang, John Q. Xiao, J. Samuel Jiang y C. L. Chien. "Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system". Physical Review Letters 69, n.º 22 (30 de noviembre de 1992): 3220–23. http://dx.doi.org/10.1103/physrevlett.69.3220.
Texto completoZhang, H., X. Y. Zhu, Y. Xu, D. J. Gawryluk, W. Xie, S. L. Ju, M. Shi et al. "Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet". Journal of Physics: Condensed Matter 34, n.º 3 (3 de noviembre de 2021): 034005. http://dx.doi.org/10.1088/1361-648x/ac3102.
Texto completoZhu, L., X. X. Qu, H. Y. Cheng y K. L. Yao. "Spin-polarized transport properties of the FeCl2/WSe2/FeCl2 van der Waals heterostructure". Applied Physics Letters 120, n.º 20 (16 de mayo de 2022): 203505. http://dx.doi.org/10.1063/5.0091580.
Texto completoBlachowicz, Tomasz, Ilda Kola, Andrea Ehrmann, Karoline Guenther y Guido Ehrmann. "Magnetic Micro and Nano Sensors for Continuous Health Monitoring". Micro 4, n.º 2 (6 de abril de 2024): 206–28. http://dx.doi.org/10.3390/micro4020015.
Texto completoTesis sobre el tema "Giant Magnetoresistance and Hall effect"
Östling, Johan. "High Accuracy Speed and Angular Position Detection by Dual Sensor". Thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-365726.
Texto completoKowalczyk, Hugo. "Transitions de phases et propriétés électroniques de couches 2D de WTe2 et MoTe2". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS571.
Texto completoThis work presents the study of phase transitions and electronic properties of two transition metal dichalcogenides: WTe2 and MoTe2. The relevance of those materials lies in its two metastable phases at ambient pressure and temperature, 1T’ and Td, classifying them as Weyl semi-metals. We had the chance to synthesize 2H-MoTe2, 1T’-MoTe2 and Td-WTe2 monocrystals by chemical vapour transport during an exchange at IISER Pune in India. High quality resulting crystals were characterized by XRD, SEM-EDX and Raman spectroscopy. Then we could exfoliate it by the anodic bonding method proper to our laboratory, characterize their 2D form and build electronic measurement devices by gold contact deposition. In the context of multiple transition metal dichalcogenides stable and metastable phases, the study of the transitions between those phases is very interesting. We first present 1T’ to Td temperature induced phase transition in MoTe2 and observe the impact of layer thickness on transition temperature and establish a phase diagram. Then, we prove the absence of 2H to 1T’ transition and its reversibility in a MoTe2 monolayer purely induced by electrostatic doping, claimed by recent works. This transition, from semi-conductive to semi-metallic phase is likely predicted for applications in nanotechnologies as an electronic switch. Through space charge doping and Raman spectroscopy experiment, we highlight the role of Tellurium migration and the creation of vacancies in this transition. We also measured Td-WTe2 transport properties (magnetoresistance and Hall effect) of various layer thicknesses. Through a two band model parameters adjustment, we could determine carriers densities and mobilities and relate them to compensated semi-metal theory responsible of Giant Magnetoresistance response of this material. Those experiments could highlight the more insulating behaviour of thinner layers and the presence of weak anti-localization at low temperature, whereas the thinner layers are more conductive and exhibits Shubnikov-de Haas quantum oscillations at high magnetic field
Wipatawit, Praphaphan. "Studies of magnetoresistance and Hall sensors in semiconductors". Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:58faf6f4-debb-4695-8909-fca7cbf310a2.
Texto completoFujimoto, Tatsuo. "Magnetic and magnetoresistive properties of anisotropy-controlled spin-valve structures". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387613.
Texto completoShang, T., H. L. Yang, Q. F. Zhan, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang et al. "Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures". AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/622466.
Texto completoShang, T., Q. F. Zhan, H. L. Yang, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang et al. "Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures". AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/621346.
Texto completoPathak, Arjun Kumar. "EXPLORATION OF NEW MULTIFUNCTIONAL MAGNETIC MATERIALS BASED ON A VARIETY OF HEUSLER ALLOYS AND RARE-EARTH COMPOUNDS". OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/353.
Texto completoKalappattil, Vijaysankar. "Spin Seebeck effect and related phenomena in functional magnetic oxides". Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7632.
Texto completoKato, Takashi, Yasuhito Ishikawa, Hiroyoshi Itoh y Jun-ichiro Inoue. "Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction". American Physical Society, 2008. http://hdl.handle.net/2237/11252.
Texto completoPersson, Anders. "Magnetoresistance and Space : Micro- and Nanofeature Sensors Designed, Manufactured and Evaluated for Space Magnetic Field Investigations". Doctoral thesis, Uppsala universitet, Ångström Space Technology Centre (ÅSTC), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151832.
Texto completoLibros sobre el tema "Giant Magnetoresistance and Hall effect"
Kübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2a ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Texto completoValenzuela, S. O. y T. Kimura. Experimental observation of the spin Hall effect using electronic nonlocal detection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0014.
Texto completoMaekawa, Sadamichi, Sergio O. Valenzuela, Eiji Saitoh y Takashi Kimura, eds. Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.001.0001.
Texto completoKimura, T. Introduction of spin torques. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0019.
Texto completoCao, Gang y Lance DeLong. Physics of Spin-Orbit-Coupled Oxides. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.001.0001.
Texto completoCapítulos de libros sobre el tema "Giant Magnetoresistance and Hall effect"
Chambers, R. G. "Magnetoresistance". En Quantum Hall Effect: A Perspective, 89–113. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_7.
Texto completoSwagten, H. J. M., M. M. H. Willekens y W. J. M. Jonge. "The Giant Magnetoresistance Effect". En Frontiers in Magnetism of Reduced Dimension Systems, 471–99. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5004-0_25.
Texto completoChambers, R. G. "Magnetoresistance and Hall Effect". En Electronics in Metals and Semiconductors, 146–60. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0423-1_11.
Texto completoBalogh, J., A. Gábor, D. Kaptás, L. F. Kiss, M. Csontos, A. Halbritter, I. Kézsmárki y G. Mihály. "Giant Magnetoresistance of a Single Interface". En Kondo Effect and Dephasing in Low-Dimensional Metallic Systems, 181–84. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0427-5_19.
Texto completoMatsukura, F. "Ga1–xMnxAs: conductivity, resistivity, magnetoresistance, Hall effect". En New Data and Updates for III-V, II-VI and I-VII Compounds, 189–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_142.
Texto completoDietl, Tomasz, Fumihiro Matsukura, Hideo Ohno, Joël Cibert y David Ferrand. "Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors". En Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 197–210. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_16.
Texto completoMurata, K., M. Ishibashi, Y. Honda, T. Komazaki, M. Tokumoto, N. Kinoshita y H. Anzai. "Electronic Properties in (BEDT-TTF)2X: Magnetoresistance and Hall Effect". En Springer Proceedings in Physics, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75424-1_49.
Texto completoOng, N. P., T. W. Jing, T. R. Chien, D. A. Brawner, Z. Z. Wang y J. M. Tarascon. "The Hall Effect and Magnetoresistance of the High-Temperature Cuprate Superconductors". En Springer Proceedings in Physics, 247–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77154-5_49.
Texto completoBratkovsky, A. M. "Giant Negative Magnetoresistance and Strong Electron-Lattice Coupling in Amorphous Semiconductors with Magnetic Impurities". En Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules, 133–40. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0985-0_14.
Texto completoLoboda, V. B., M. Ya Dovzhyk, V. O. Kravchenko, S. M. Khursenko y Yu O. Shkurdoda. "On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School". En Lecture Notes in Mechanical Engineering, 81–88. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6133-3_8.
Texto completoActas de conferencias sobre el tema "Giant Magnetoresistance and Hall effect"
Yoo, JinHyeong, James B. Restorff y Marilyn Wun-Fogle. "Non-Contact Tension Sensing Using Fe-Ga Alloy Strip". En ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8909.
Texto completoWen, Zhenchao, Takahide Kubota, Tatsuya Y. Arnamoto y Koki Takanashi. "Enhanced Current-Perpendicular-to-Plane Giant Magnetoresistance Effect in Half-Metallic NiMnSb Heusler Alloy Based Nano-Junctions with Multiple Ag Spacers". En 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479999.
Texto completoRuotolo, A. y D. Li. "Giant Photo-Hall Effect in Metals." En 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508574.
Texto completoShkurdoda, Yu O., A. M. Chornous, A. P. Kharchenko, A. G. Basov y L. V. Dekhtyaruk. "Effect of giant magnetoresistance in a symmetric magnetically sandwich". En 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757282.
Texto completoThiyagarajah, N., Y. Lau, D. Betto, K. Borisov, J. Coey, P. S. Stamenov y K. Rode. "Giant spontaneous hall effect in zero-moment Mn2RuxGa". En 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157431.
Texto completoMerzlikin, A. M., A. P. Vinogradov, M. Inoue y A. B. Granovsky. "Giant photonic Hall effect in magneto-photonic crystals". En Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0017.
Texto completoZhang, Rong Jun, Liang-Yao Chen, Shi-Ming Zhou, Yu Wang, Bo Xu, Dong-Liang Qian, Wei-Ming Zheng y Yu-Xiang Zheng. "Giant magnetoresistance effect in granular-type Co-Ag/Ag multilayers". En Third International Conference on Thin Film Physics and Applications, editado por Shixun Zhou, Yongling Wang, Yi-Xin Chen y Shuzheng Mao. SPIE, 1998. http://dx.doi.org/10.1117/12.300729.
Texto completoMurzina, T. V., T. V. Misuryaev, A. E. Kravets, A. A. Nikulin y O. A. Aktsipetrov. "Magnetic dots: giant magnetoresistance and nonlinear magneto-optical Kerr effect". En CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest. IEEE, 2001. http://dx.doi.org/10.1109/cleo.2001.947573.
Texto completoPhetchakul, T., P. Taisettavatkul, W. Pengchan, W. Yamwong y A. Poyai. "The new design for magnetoresistance effect on Hall plate structure". En 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2012). IEEE, 2012. http://dx.doi.org/10.1109/ecticon.2012.6254189.
Texto completoSakuraba, Takahito, Masamichi Sakai, Tastuya Arai, Yusuke Tanaka, Hiroaki Hirama, Zentaro Honda, Akira Kitajima, Koji Higuchi, Akihiro Oshima y Shigehiko Hasegawa. "Hall Effect and Magnetoresistance in GdxY1−xH2(x\( \fallingdotseq \) 0.4)". En Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012009.
Texto completoInformes sobre el tema "Giant Magnetoresistance and Hall effect"
Gonis, Antonios y Bruce Guerney. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), marzo de 2018. http://dx.doi.org/10.2172/1431005.
Texto completoGonis, A. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), octubre de 1996. http://dx.doi.org/10.2172/756989.
Texto completoButler, W. H. y B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. CRADA final report for CRADA number Y-1293-0175. Office of Scientific and Technical Information (OSTI), septiembre de 1996. http://dx.doi.org/10.2172/461241.
Texto completoButler, W. H. y B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. Project accomplishment summary report for 93-MULT-116-D1-04. Office of Scientific and Technical Information (OSTI), septiembre de 1996. http://dx.doi.org/10.2172/446402.
Texto completo