Siga este enlace para ver otros tipos de publicaciones sobre el tema: Germanium poreux.

Artículos de revistas sobre el tema "Germanium poreux"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Germanium poreux".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova y S. A. Gavrilov. "RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON". Journal of Applied Spectroscopy 89, n.º 5 (21 de septiembre de 2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Texto completo
Resumen
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the composition of thin silicon/germanium alloy films formed by changing the temperature and duration of RTA. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll y Rolf Brendel. "Porous germanium multilayers". physica status solidi (c) 8, n.º 6 (7 de abril de 2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov y Sergey Gavrilov. "Germanium electrodeposition into porous silicon for silicon-germanium alloying". Materialia 26 (diciembre de 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Amato, G., A. M. Rossi, L. Boarino y N. Brunetto. "On the role of germanium in porous silicon-germanium luminescence". Philosophical Magazine B 76, n.º 3 (septiembre de 1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Xiu, Wei Guo, Qian Wan y Jianmin Ma. "Porous amorphous Ge/C composites with excellent electrochemical properties". RSC Advances 5, n.º 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad y Mark J. MacLachlan. "Chiral nematic porous germania and germanium/carbon films". Nanoscale 7, n.º 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Texto completo
Resumen
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO2/CNC composites, which were converted to semiconducting, mesoporous GeO2/C and Ge/C replicas.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu y Dihua Wang. "Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach". Journal of Materials Chemistry A 3, n.º 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll y R. Brendel. "Lift-off of Porous Germanium Layers". Journal of The Electrochemical Society 158, n.º 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Isaiev, M., S. Tutashkonko, V. Jean, K. Termentzidis, T. Nychyporuk, D. Andrusenko, O. Marty, R. M. Burbelo, D. Lacroix y V. Lysenko. "Thermal conductivity of meso-porous germanium". Applied Physics Letters 105, n.º 3 (21 de julio de 2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Platonov, Nikolay, Nail Suleimanov y Valery Bazarov. "Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors". E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Texto completo
Resumen
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was the investigation of the electrophysical characteristics of samples of nanostructured porous germanium (Ge) depending on the implantation dose and surface morphology. The scientific novelty of this research lies in the search the structures with the highest effective surface area and electronic conductivity, capable of multiplying the energy capacity and specific power of ECC. Methods: The samples of amorphous Ge were grown on dielectric single-crystal substrates of Al2O3. The thickness of samples was 600 and 1000 nm. The magnetron sputtering and ion implantation methods were used to growth these structures. The irradiation with Ge+ ions produced with an energy of 40 keV and the range of implantation doses varied from 2·1016 to 12•1016 ion / cm2. The study of electrical properties was carried out on the Hall installation HL55PC at the NPP KVANT in Moscow. The following parameters were measured: the sheet concentration of carriers in the near-surface layer, electrical resistance, mobility of the charge carriers, Hall coefficient. As a result, the dependences of carriers concentration and their mobility as the function of the implantation dose and thickness of the samples of nanostructured porous germanium were determined, and the results were analyzed. Results: It was found that ion implantation of single-crystal germanium leads to an increase in the carrier concentration in the near-surface layer. To sum up, the most suitable material as an electrode for ECC is the porous germanium with the maximum dose of ion implantation and the largest thickness. The maximum sheet carrier concentration that was obtained in the study for Ge is 1017 cm-2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, Wenzheng Zhou, Wei Bai, Tie Lin y Junhao Chu. "Fabrication and characteristics of porous germanium films". Science and Technology of Advanced Materials 10, n.º 6 (diciembre de 2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Steinbach, T. y W. Wesch. "Porous structure formation in ion irradiated germanium". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (enero de 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Fässler, Thomas F. "Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure". Angewandte Chemie International Edition 46, n.º 15 (2 de abril de 2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong y Yan Yu. "Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries". Journal of Materials Chemistry A 4, n.º 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park y Chan-Jin Park. "Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries". Journal of Materials Chemistry A 3, n.º 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Texto completo
Resumen
Germanium oxide (GeO2), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Choi, Hee Cheul y Jillian M. Buriak. "Preparation and functionalization of hydride terminated porous germanium". Chemical Communications, n.º 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Akkari, Emna, Oualid Touayar y Brahim Bessais. "Reflectivity, Absorption and Structural Studies of Porous Germanium". Sensor Letters 9, n.º 6 (1 de diciembre de 2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Guzmán, David, Miguel Cruz y Chumin Wang. "Electronic and optical properties of ordered porous germanium". Microelectronics Journal 39, n.º 3-4 (marzo de 2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Miyazaki, S., K. Sakamoto, K. Shiba y M. Hirose. "Photoluminescence from anodized and thermally oxidized porous germanium". Thin Solid Films 255, n.º 1-2 (enero de 1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng y T. C. Chu. "Nanoparticle-Assisted Growth of Porous Germanium Thin Films". Advanced Materials 16, n.º 13 (5 de julio de 2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya y S. Bayliss. "Observation of nanocrystals in porous stain-etched germanium". physica status solidi (a) 197, n.º 1 (mayo de 2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev y Yu N. Osin. "Formation of Porous Germanium Layers by Silver-Ion Implantation". Technical Physics Letters 44, n.º 4 (abril de 2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, A. I. Gumarov, L. R. Tagirov, I. M. Klimovich y A. L. Stepanov. "Porous germanium with copper nanoparticles formed by ion implantation". Vacuum 166 (agosto de 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Rogov, A. M., A. I. Gumarov, L. R. Tagirov y A. L. Stepanov. "Swelling and sputtering of porous germanium by silver ions". Composites Communications 16 (diciembre de 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev y A. L. Stepanov. "Porous germanium with Ag nanoparticles formed by ion implantation". Journal of Physics: Conference Series 1092 (septiembre de 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais y J. Benbrahim. "Study and characterization of porous germanium for radiometric measurements". physica status solidi (c) 6, n.º 7 (julio de 2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin y A. V. Latyshev. "New method of porous Ge layer fabrication: structure and optical properties". Физика и техника полупроводников 52, n.º 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Texto completo
Resumen
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2<Ge–NCs> heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2<Ge–NCs> heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, which was ~70 and ~80%, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev y V. V. Vorob’ev. "Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation". Nanotechnologies in Russia 12, n.º 9-10 (septiembre de 2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo y S. C. Wang. "Phase transformation and optical characteristics of porous germanium thin film". Thin Solid Films 516, n.º 10 (marzo de 2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Abdullahi, Yusuf Zuntu y Fatih Ersan. "Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer". RSC Advances 13, n.º 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, Yannick Dumeige, Loїc Bodiou, Mohammed Guendouz, Abdelouahab Zegadi y Joël Charrier. "Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared". Sensors 22, n.º 3 (22 de enero de 2022): 844. http://dx.doi.org/10.3390/s22030844.

Texto completo
Resumen
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive layers and their respective porosity on the multilayer structures reflectance spectrum is investigated while favoring low layer thicknesses and thus the ease of multilayers manufacturing. The suitability of these microcavities for mid-infrared SF6 gas sensing is then numerically assessed. Using an asymmetrical microcavity porous structure, a sensitivity of 0.01%/ppm and a limit of detection (LOD) around 1 ppb for the SF6 gas detection are calculated. Thanks to both the porous nature allowing gases to easily infiltrate the overall structure and Ge mid-infrared optical properties, a theoretical detection limit nearly 1000 times lower than the current state of the art is simulated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, Naser M. Ahmed, Abdulsalam Abuelsamen, Osama Abu Noqta, Ghaseb N. Makhadmeh, Amal Mohamed Ahmed Ali y Almutery Aml. "Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection". WSEAS TRANSACTIONS ON ELECTRONICS 15 (10 de diciembre de 2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Texto completo
Resumen
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal conditions for the porous silicon (PS) and Ge-doped porous silicon (Ge-PS) samples were (90V, 100mA, 1s) and (100V, 10mA, 0.5s), respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu y Xiangdong Meng. "Amorphous porous germanium anode with variable dimension for lithium ion batteries". Journal of Materials Science 56, n.º 27 (28 de junio de 2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev y Y. N. Osin. "Porous germanium formed by low energy high dose Ag + -ion implantation". Vacuum 152 (junio de 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chang, S. S. y R. E. Hummel. "Comparison of photoluminescence behavior of porous germanium and spark-processed Ge". Journal of Luminescence 86, n.º 1 (febrero de 2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M. Faustini y D. Grosso. "Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates". ECS Transactions 33, n.º 16 (17 de diciembre de 2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Xiao, Ying, Minhua Cao, Ling Ren y Changwen Hu. "Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance". Nanoscale 4, n.º 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe y Paul C. McIntyre. "Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon". Small 6, n.º 9 (21 de abril de 2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke y Xiao-Dong Zhou. "Porous germanium enabled high areal capacity anode for lithium-ion batteries". Composites Part B: Engineering 163 (abril de 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kartopu, G. y Y. Ekinci. "Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films". Thin Solid Films 473, n.º 2 (febrero de 2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao y Deren Yang. "Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries". RSC Advances 5, n.º 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Akkari, Emna, Oualid Touayar, F. Javier Del Campo y Josep Montserrat. "Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation". International Journal of Nanotechnology 10, n.º 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya y S. Bayliss. "Raman and X-ray studies of nanocrystals in porous stain-etched germanium". Thin Solid Films 437, n.º 1-2 (agosto de 2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wolter, S. D., T. Tyler y N. M. Jokerst. "Surface characterization of oxide growth on porous germanium films oxidized in air". Thin Solid Films 522 (noviembre de 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yuan, Ye, Jia Liu, Hao Ren, Xiaofei Jing, Wei Wang, Heping Ma, Fuxing Sun y Huijun Zhao. "Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework". Journal of Materials Research 27, n.º 10 (9 de enero de 2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova y S. A. Gavrilov. "Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon". Journal of Applied Spectroscopy 89, n.º 5 (noviembre de 2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, Tadeáš Hanuš, Ahmed Ayari, Gwenaëlle Hamon, Jinyoun Cho, Kristof Dessein, Maxime Darnon y Abderraouf Boucherif. "Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse". Materials Science in Semiconductor Processing 168 (diciembre de 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, Dmitry Goroshko, Olga Goroshko, Ilia Tsiniaikin, Vitaly Bondarenko, Maksim Murtazin, Alexey Dronov y Sergey Gavrilov. "Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing". Materials Science in Semiconductor Processing 187 (marzo de 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО y Л. С. ВОЛКОВА. "STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON". Автометрия 59, n.º 6 (29 de diciembre de 2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Texto completo
Resumen
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводности плёнок, которые составляют 7-9 и 3-6 Вт / (м ⋅ К) для сплошной и пористой плёнок соответственно. Низкая теплопроводность пористой плёнки объясняется дополнительнымфононным рассеянием на развитой поверхности пор. Перспективность применения таких плёнок в термоэлектрических преобразователях обеспечивается простотой и масштабируемостью способа изготовления сплава, а также его низкой теплопроводностью. Solid and porous films of the Si 1-xGex alloys with a germanium content of about 40% and a thickness of 3-4 μm, formed on single-crystal silicon by electrochemical deposition of germanium into a porous silicon matrix followed by rapid thermal annealing at a temperature of 950 °C, are studied by Raman spectroscopy, optical spectroscopy, and scanning electron microscopy. Based on the Raman spectra taken in the Stokes and anti-Stokes frequency regions, using Boltzmann statistics and the Fourier thermal conductivity law, the thermal conductivity of the films is determined, which is found to be 7-9 and 3-6 W/(m×K) for a continuous and porous film, respectively. The low thermal conductivity of the porous film is explained by additional phonon scattering from the developed pore surface. The prospect of using such films in thermoelectric converters is ensured by the simplicity and scalability of the method for manufacturing the alloy, as well as its low thermal conductivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zegadi, Rami, Nathalie Lorrain, Loїc Bodiou, Mohammed Guendouz, Lahcene Ziet y Joël Charrier. "Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides". Journal of Optics 23, n.º 3 (18 de febrero de 2021): 035102. http://dx.doi.org/10.1088/2040-8986/abdf69.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía