Siga este enlace para ver otros tipos de publicaciones sobre el tema: Geometry, Projective.

Artículos de revistas sobre el tema "Geometry, Projective"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Geometry, Projective".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Machale, Des y H. S. M. Coxeter. "Projective Geometry". Mathematical Gazette 74, n.º 467 (marzo de 1990): 82. http://dx.doi.org/10.2307/3618883.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rota, Gian-Carlo. "Projective geometry". Advances in Mathematics 77, n.º 2 (octubre de 1989): 263. http://dx.doi.org/10.1016/0001-8708(89)90023-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tabatabaeifar, Tayebeh, Behzad Najafi y Akbar Tayebi. "Weighted projective Ricci curvature in Finsler geometry". Mathematica Slovaca 71, n.º 1 (29 de enero de 2021): 183–98. http://dx.doi.org/10.1515/ms-2017-0446.

Texto completo
Resumen
Abstract In this paper, we introduce the weighted projective Ricci curvature as an extension of projective Ricci curvature introduced by Z. Shen. We characterize the class of Randers metrics of weighted projective Ricci flat curvature. We find the necessary and sufficient condition under which a Kropina metric has weighted projective Ricci flat curvature. Finally, we show that every projectively flat metric with isotropic weighted projective Ricci and isotropic S-curvature is a Kropina metric or Randers metric.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ubaidillah, Muhammad Izzat. "Proyeksi Geometri Fuzzy pada Ruang". CAUCHY 2, n.º 3 (15 de noviembre de 2012): 139. http://dx.doi.org/10.18860/ca.v2i3.3123.

Texto completo
Resumen
<div class="standard"><a id="magicparlabel-481">Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.</a></div>
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Calderbank, David, Michael Eastwood, Vladimir Matveev y Katharina Neusser. "C-projective geometry". Memoirs of the American Mathematical Society 267, n.º 1299 (septiembre de 2020): 0. http://dx.doi.org/10.1090/memo/1299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kanatani, Kenichi. "Computational projective geometry". CVGIP: Image Understanding 54, n.º 3 (noviembre de 1991): 333–48. http://dx.doi.org/10.1016/1049-9660(91)90034-m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Erdnüß, B. "MEASURING IN IMAGES WITH PROJECTIVE GEOMETRY". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1 (26 de septiembre de 2018): 141–48. http://dx.doi.org/10.5194/isprs-archives-xlii-1-141-2018.

Texto completo
Resumen
<p><strong>Abstract.</strong> There is a fundamental relationship between projective geometry and the perspective imaging geometry of a pinhole camera. Projective scales have been used to measure within images from the beginnings of photogrammetry, mostly the cross-ratio on a straight line. However, there are also projective frames in the plane with interesting connections to affine and projective geometry in three dimensional space that can be utilized for photogrammetry. This article introduces an invariant on the projective plane, describes its relation to affine geometry, and how to use it to reduce the complexity of projective transformations. It describes how the invariant can be use to measure on projectively distorted planes in images and shows applications to this in 3D reconstruction. The article follows two central ideas. One is to measure coordinates in an image relatively to each other to gain as much invariance of the viewport as possible. The other is to use the remaining variance to determine the 3D structure of the scene and to locate the camera centers. For this, the images are projected onto a common plane in the scene. 3D structure not on the plane occludes different parts of the plane in the images. From this, the position of the cameras and the 3D structure are obtained.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Chaput, Pierre-Emmanuel. "Geometry over composition algebras: Projective geometry". Journal of Algebra 298, n.º 2 (abril de 2006): 340–62. http://dx.doi.org/10.1016/j.jalgebra.2006.02.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Song, Xiao Zhuang, Ming Liang Lu y Tao Qin. "Projective Geometry on the Structure of Geometric Composition Analysis Application". Applied Mechanics and Materials 166-169 (mayo de 2012): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.127.

Texto completo
Resumen
The analysis rule of geometry composition analysis in building structure must rely on geometry theory, while the traditional Euclidean geometry theory can not solve some building structures problems of the geometry components. This problem can be solved in the use of projective geometry theory. In this paper we introduce the proof of projective geometry in the geometry composition analysis and we discuss the application of this theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gupta, K. C. y Suryansu Ray. "Fuzzy plane projective geometry". Fuzzy Sets and Systems 54, n.º 2 (marzo de 1993): 191–206. http://dx.doi.org/10.1016/0165-0114(93)90276-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Dillon, Meighan. "Projective Geometry for All". College Mathematics Journal 45, n.º 3 (mayo de 2014): 169–78. http://dx.doi.org/10.4169/college.math.j.45.3.169.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

López Peña, Javier y Oliver Lorscheid. "Projective geometry for blueprints". Comptes Rendus Mathematique 350, n.º 9-10 (mayo de 2012): 455–58. http://dx.doi.org/10.1016/j.crma.2012.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

E. Arif, Ghassan. "Intuitionistic fuzzy projective geometry". Journal of University of Anbar for Pure Science 3, n.º 1 (1 de abril de 2009): 143–47. http://dx.doi.org/10.37652/juaps.2009.15413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Sauer, Tilman y Tobias Schütz. "Einstein on involutions in projective geometry". Archive for History of Exact Sciences 75, n.º 5 (8 de enero de 2021): 523–55. http://dx.doi.org/10.1007/s00407-020-00270-z.

Texto completo
Resumen
AbstractWe discuss Einstein’s knowledge of projective geometry. We show that two pages of Einstein’s Scratch Notebook from around 1912 with geometrical sketches can directly be associated with similar sketches in manuscript pages dating from his Princeton years. By this correspondence, we show that the sketches are all related to a common theme, the discussion of involution in a projective geometry setting with particular emphasis on the infinite point. We offer a conjecture as to the probable purpose of these geometric considerations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Uchino, K. "Arnold's Projective Plane and -Matrices". Advances in Mathematical Physics 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/956128.

Texto completo
Resumen
We will explain Arnold's 2-dimensional (shortly, 2D) projective geometry (Arnold, 2005) by means of lattice theory. It will be shown that the projection of the set of nontrivial triangular -matrices is the pencil of tangent lines of a quadratic curve on Arnold's projective plane.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Lashkhi, A. A. "General geometric lattices and projective geometry of modules". Journal of Mathematical Sciences 74, n.º 3 (abril de 1995): 1044–77. http://dx.doi.org/10.1007/bf02362832.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Gunn, Charles G. "Doing Euclidean Plane Geometry Using Projective Geometric Algebra". Advances in Applied Clifford Algebras 27, n.º 2 (18 de octubre de 2016): 1203–32. http://dx.doi.org/10.1007/s00006-016-0731-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Yur'ev, D. V. "Complex projective geometry and quantum projective field theory". Theoretical and Mathematical Physics 101, n.º 3 (diciembre de 1994): 1387–403. http://dx.doi.org/10.1007/bf01035459.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ito, Atsushi, Makoto Miura y Kazushi Ueda. "Projective Reconstruction in Algebraic Vision". Canadian Mathematical Bulletin 63, n.º 3 (13 de noviembre de 2019): 592–609. http://dx.doi.org/10.4153/s0008439519000687.

Texto completo
Resumen
AbstractWe discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give an algebro-geometric variant of the projective reconstruction theorem by Hartley and Schaffalitzky.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

WAN, C. y J. SATO. "Multiple View Geometry under Projective Projection in Space-Time". IEICE Transactions on Information and Systems E91-D, n.º 9 (1 de septiembre de 2008): 2353–59. http://dx.doi.org/10.1093/ietisy/e91-d.9.2353.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Rubin, Jacques. "Applications of a Particular Four-Dimensional Projective Geometry to Galactic Dynamics". Galaxies 6, n.º 3 (3 de agosto de 2018): 83. http://dx.doi.org/10.3390/galaxies6030083.

Texto completo
Resumen
Relativistic localizing systems that extend relativistic positioning systems show that pseudo-Riemannian space-time geometry is somehow encompassed in a particular four-dimensional projective geometry. The resulting geometric structure is then that of a generalized Cartan space (also called Cartan connection space) with projective connection. The result is that locally non-linear actions of projective groups via homographies systematically induce the existence of a particular space-time foliation independent of any space-time dynamics or solutions of Einstein’s equations for example. In this article, we present the consequences of these projective group actions and this foliation. In particular, it is shown that the particular geometric structure due to this foliation is similar from a certain point of view to that of a black hole but not necessarily based on the existence of singularities. We also present a modified Newton’s laws invariant with respect to the homographic transformations induced by this projective geometry. Consequences on galactic dynamics are discussed and fits of galactic rotational velocity curves based on these modifications which are independent of any Modified Newtonian Dynamics (MOND) or dark matter theories are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kalmbach H.E., Gudrun. "Projective Gravity". International Journal of Contemporary Research and Review 9, n.º 03 (13 de marzo de 2018): 20181–83. http://dx.doi.org/10.15520/ijcrr/2018/9/03/466.

Texto completo
Resumen
In [1] and [3] it was pointed out that octonians can replace an infinite dimensional Hilbert space and psi-waves descriptions concerning the states of deuteron which are finite in number. It is then clear that gravity needs projective and projection geometry to be described in a unified way with the three other basic forces of physics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Burn, Bob, Lars Kadison y Matthias T. Kromann. "Projective Geometry and Modern Algebra". Mathematical Gazette 80, n.º 488 (julio de 1996): 446. http://dx.doi.org/10.2307/3619609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Delphenich, D. H. "Projective geometry and special relativity". Annalen der Physik 518, n.º 3 (22 de febrero de 2006): 216–46. http://dx.doi.org/10.1002/andp.20065180304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Grigorenko, A. N. "Geometry of projective Hilbert space". Physical Review A 46, n.º 11 (1 de diciembre de 1992): 7292–94. http://dx.doi.org/10.1103/physreva.46.7292.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Givental, A. B. "Homological geometry I. Projective hypersurfaces". Selecta Mathematica 1, n.º 2 (septiembre de 1995): 325–45. http://dx.doi.org/10.1007/bf01671568.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Frescura, F. A. M. "Projective spinor geometry and prespace". Foundations of Physics 18, n.º 8 (agosto de 1988): 777–808. http://dx.doi.org/10.1007/bf01889310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Čap, A., A. R. Gover y H. R. Macbeth. "Einstein metrics in projective geometry". Geometriae Dedicata 168, n.º 1 (3 de febrero de 2013): 235–44. http://dx.doi.org/10.1007/s10711-013-9828-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Schwartz, Richard Evan y Serge Tabachnikov. "Elementary Surprises in Projective Geometry". Mathematical Intelligencer 32, n.º 3 (24 de abril de 2010): 31–34. http://dx.doi.org/10.1007/s00283-010-9137-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Aicardi, Francesca. "Projective geometry from Poisson algebras". Journal of Geometry and Physics 61, n.º 8 (agosto de 2011): 1574–86. http://dx.doi.org/10.1016/j.geomphys.2011.03.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kohn, Kathlén y Kristian Ranestad. "Projective Geometry of Wachspress Coordinates". Foundations of Computational Mathematics 20, n.º 5 (11 de noviembre de 2019): 1135–73. http://dx.doi.org/10.1007/s10208-019-09441-z.

Texto completo
Resumen
Abstract We show that there is a unique hypersurface of minimal degree passing through the non-faces of a polytope which is defined by a simple hyperplane arrangement. This generalizes the construction of the adjoint curve of a polygon by Wachspress (A rational finite element basis, Academic Press, New York, 1975). The defining polynomial of our adjoint hypersurface is the adjoint polynomial introduced by Warren (Adv Comput Math 6:97–108, 1996). This is a key ingredient for the definition of Wachspress coordinates, which are barycentric coordinates on an arbitrary convex polytope. The adjoint polynomial also appears both in algebraic statistics, when studying the moments of uniform probability distributions on polytopes, and in intersection theory, when computing Segre classes of monomial schemes. We describe the Wachspress map, the rational map defined by the Wachspress coordinates, and the Wachspress variety, the image of this map. The inverse of the Wachspress map is the projection from the linear span of the image of the adjoint hypersurface. To relate adjoints of polytopes to classical adjoints of divisors in algebraic geometry, we study irreducible hypersurfaces that have the same degree and multiplicity along the non-faces of a polytope as its defining hyperplane arrangement. We list all finitely many combinatorial types of polytopes in dimensions two and three for which such irreducible hypersurfaces exist. In the case of polygons, the general such curves are elliptic. In the three-dimensional case, the general such surfaces are either K3 or elliptic.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Trappey, Amy J. C. y Shankaran Matrubhutam. "Fixture configuration using projective geometry". Journal of Manufacturing Systems 12, n.º 6 (enero de 1993): 486–95. http://dx.doi.org/10.1016/0278-6125(93)90345-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Safari, R., N. Narasimhamurthi, M. Shridhar y M. Ahmadi. "Document registration using projective geometry". IEEE Transactions on Image Processing 6, n.º 9 (septiembre de 1997): 1337–41. http://dx.doi.org/10.1109/83.623198.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Dodson, C. T. J. "Fréchet geometry via projective limits". International Journal of Geometric Methods in Modern Physics 11, n.º 07 (agosto de 2014): 1460017. http://dx.doi.org/10.1142/s0219887814600172.

Texto completo
Resumen
Fréchet spaces of sections arise naturally as configurations of a physical field. Some recent work in Fréchet geometry is briefly reviewed and some suggestions for future work are offered. An earlier result on the structure of second tangent bundles in the finite-dimensional case was extended to infinite-dimensional Banach manifolds and Fréchet manifolds that could be represented as projective limits of Banach manifolds. This led to further results concerning the characterization of second tangent bundles and differential equations in the more general Fréchet structure needed for applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

McKay, Benjamin. "Rigid geometry on projective varieties". Mathematische Zeitschrift 272, n.º 3-4 (12 de noviembre de 2011): 761–91. http://dx.doi.org/10.1007/s00209-011-0957-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Delphenich, D. H. "Projective geometry and special relativity". Annalen der Physik 15, n.º 3 (15 de marzo de 2006): 216–46. http://dx.doi.org/10.1002/andp.200510179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bogomolov, Fedor y Yuri Tschinkel. "Galois Theory and Projective Geometry". Communications on Pure and Applied Mathematics 66, n.º 9 (26 de junio de 2013): 1335–59. http://dx.doi.org/10.1002/cpa.21466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Bădescu, Lucian. "Special chapters of projective geometry". Rendiconti del Seminario Matematico e Fisico di Milano 69, n.º 1 (diciembre de 1999): 239–326. http://dx.doi.org/10.1007/bf02938684.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hestenes, David y Renatus Ziegler. "Projective geometry with Clifford algebra". Acta Applicandae Mathematicae 23, n.º 1 (abril de 1991): 25–63. http://dx.doi.org/10.1007/bf00046919.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gros, P., R. Hartley, R. Mohr y L. Quan. "How Useful is Projective Geometry?" Computer Vision and Image Understanding 65, n.º 3 (marzo de 1997): 442–46. http://dx.doi.org/10.1006/cviu.1996.0496.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

ANDRUCHOW, ESTEBAN, GUSTAVO CORACH y DEMETRIO STOJANOFF. "PROJECTIVE SPACE OF A C*-MODULE". Infinite Dimensional Analysis, Quantum Probability and Related Topics 04, n.º 03 (septiembre de 2001): 289–307. http://dx.doi.org/10.1142/s0219025701000516.

Texto completo
Resumen
Let X be a right Hilbert C*-module over A. We study the geometry and the topology of the projective space [Formula: see text] of X, consisting of the orthocomplemented submodules of X which are generated by a single element. We also study the geometry of the p-sphere Sp(X) and the natural fibration [Formula: see text], where Sp(X) = {x ∈ X: <x, x> = p}, for p ∈ A a projection. The projective space and the p-sphere are shown to be homogeneous differentiable spaces of the unitary group of the algebra ℒA(X) of adjointable operators of X. The homotopy theory of these spaces is examined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Li, Xinsheng y Xuedong Yuan. "Fundamental Matrix Computing Based on 3D Metrical Distance". Algorithms 14, n.º 3 (15 de marzo de 2021): 89. http://dx.doi.org/10.3390/a14030089.

Texto completo
Resumen
To reconstruct point geometry from multiple images, computation of the fundamental matrix is always necessary. With a new optimization criterion, i.e., the re-projective 3D metric geometric distance rather than projective space under RANSAC (Random Sample And Consensus) framework, our method can reveal the quality of the fundamental matrix visually through 3D reconstruction. The geometric distance is the projection error of 3D points to the corresponding image pixel coordinates in metric space. The reasonable visual figures of the reconstructed scenes are shown but only some numerical result were compared, as is standard practice. This criterion can lead to a better 3D reconstruction result especially in 3D metric space. Our experiments validate our new error criterion and the quality of fundamental matrix under the new criterion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Bidabad, Behroz y Maryam Sepasi. "On a projectively invariant pseudo-distance in Finsler geometry". International Journal of Geometric Methods in Modern Physics 12, n.º 04 (abril de 2015): 1550043. http://dx.doi.org/10.1142/s0219887815500437.

Texto completo
Resumen
Here, a nonlinear analysis method is applied rather than classical one to study projective changes of Finsler metrics. More intuitively, a projectively invariant pseudo-distance is introduced and characterized with respect to the Ricci tensor and its covariant derivatives.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Stebletsova, Vera y Yde Venema. "Undecidable theories of Lyndon algebras". Journal of Symbolic Logic 66, n.º 1 (marzo de 2001): 207–24. http://dx.doi.org/10.2307/2694918.

Texto completo
Resumen
AbstractWith each projective geometry we can associate a Lyndon algebra. Such an algebra always satisfies Tarski's axioms for relation algebras and Lyndon algebras thus form an interesting connection between the fields of projective geometry and algebraic logic. In this paper we prove that if G is a class of projective geometries which contains an infinite projective geometry of dimension at least three, then the class L(G) of Lyndon algebras associated with projective geometries in G has an undecidable equational theory. In our proof we develop and use a connection between projective geometries and diagonal-free cylindric algebras.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Pfeiffer, Thorsten y Stefan E. Schmidt. "Projective mappings between projective lattice geometries". Journal of Geometry 54, n.º 1-2 (noviembre de 1995): 105–14. http://dx.doi.org/10.1007/bf01222858.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Artstein-Avidan, Shiri y Boaz A. Slomka. "The fundamental theorems of affine and projective geometry revisited". Communications in Contemporary Mathematics 19, n.º 05 (18 de agosto de 2016): 1650059. http://dx.doi.org/10.1142/s0219199716500590.

Texto completo
Resumen
The fundamental theorem of affine geometry is a classical and useful result. For finite-dimensional real vector spaces, the theorem roughly states that a bijective self-mapping which maps lines to lines is affine-linear. In this paper, we prove several generalizations of this result and of its classical projective counterpart. We show that under a significant geometric relaxation of the hypotheses, namely that only lines parallel to one of a fixed set of finitely many directions are mapped to lines, an injective mapping of the space must be of a very restricted polynomial form. We also prove that under mild additional conditions the mapping is forced to be affine-additive or affine-linear. For example, we show that five directions in three-dimensional real space suffice to conclude affine-additivity. In the projective setting, we show that [Formula: see text] fixed projective points in real [Formula: see text]-dimensional projective space, through which all projective lines that pass are mapped to projective lines, suffice to conclude projective-linearity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

WESSLER, MARKUS. "A GEOMETRIC VERSION OF DYSON'S LEMMA FOR FACTORS OF ARBITRARY DIMENSION". International Journal of Mathematics 13, n.º 01 (febrero de 2002): 43–65. http://dx.doi.org/10.1142/s0129167x02001149.

Texto completo
Resumen
This paper generalizes the geometric part of the Esnault–Viehweg paper on Dyson's Lemma for a product of projective lines. Using the method of weak positivity from algebraic geometry, we are able to study products of smooth projective varieties of arbitrary dimension and to prove a geometric analogue of Dyson's Lemma for this case. Our main result is in fact a quantitative version of Faltings' product theorem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chen, Wen-Haw y Ja’faruddin. "Traditional Houses and Projective Geometry: Building Numbers and Projective Coordinates". Journal of Applied Mathematics 2021 (31 de agosto de 2021): 1–25. http://dx.doi.org/10.1155/2021/9928900.

Texto completo
Resumen
The natural mathematical abilities of humans have advanced civilizations. These abilities have been demonstrated in cultural heritage, especially traditional houses, which display evidence of an intuitive mathematics ability. Tribes around the world have built traditional houses with unique styles. The present study involved the collection of data from documentation, observation, and interview. The observations of several traditional buildings in Indonesia were based on camera images, aerial camera images, and documentation techniques. We first analyzed the images of some sample of the traditional houses in Indonesia using projective geometry and simple house theory and then formulated the definitions of building numbers and projective coordinates. The sample of the traditional houses is divided into two categories which are stilt houses and nonstilt house. The present article presents 7 types of simple houses, 21 building numbers, and 9 projective coordinates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Janic, Milan y Dejan Tanikic. "Geometry of straight lines pencils". Facta universitatis - series: Architecture and Civil Engineering 2, n.º 4 (2002): 291–94. http://dx.doi.org/10.2298/fuace0204291j.

Texto completo
Resumen
This paper considers a pencil of straight Unes in the Euclidean plane as well as the same pencil of straight lines in the projective plane where the projective geometry model M" is defined with its points forming the sets of (n-l) collinear points, whose supporting straight lines belong to the considered pencil of straight lines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kruglikov, Boris, Vladimir Matveev y Dennis The. "Submaximally symmetric c-projective structures". International Journal of Mathematics 27, n.º 03 (marzo de 2016): 1650022. http://dx.doi.org/10.1142/s0129167x16500221.

Texto completo
Resumen
[Formula: see text]-projective structures are analogues of projective structures in the almost complex setting. The maximal dimension of the Lie algebra of [Formula: see text]-projective symmetries of a complex connection on an almost complex manifold of [Formula: see text]-dimension [Formula: see text] is classically known to be [Formula: see text]. We prove that the submaximal dimension is equal to [Formula: see text]. If the complex connection is minimal (encoded as a normal parabolic geometry), the harmonic curvature of the [Formula: see text]-projective structure has three components and we specify the submaximal symmetry dimensions and the corresponding geometric models for each of these three pure curvature types. If the connection is non-minimal, we introduce a modified normalization condition on the parabolic geometry and use this to resolve the symmetry gap problem. We prove that the submaximal symmetry dimension in the class of Levi-Civita connections for pseudo-Kähler metrics is [Formula: see text], and specializing to the Kähler case, we obtain [Formula: see text]. This resolves the symmetry gap problem for metrizable [Formula: see text]-projective structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía