Tesis sobre el tema "Geometry, Projective"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Geometry, Projective".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Winroth, Harald. "Dynamic projective geometry". Doctoral thesis, Stockholm : Tekniska högsk, 1999. http://www.lib.kth.se/abs99/winr0324.pdf.
Texto completoWong, Tzu Yen. "Image transition techniques using projective geometry". University of Western Australia. School of Computer Science and Software Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0149.
Texto completoRomano, Raquel Andrea. "Projective minimal analysis of camera geometry". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29231.
Texto completoIncludes bibliographical references (p. 115-120).
This thesis addresses the general problem of how to find globally consistent and accurate estimates of multiple-view camera geometry from uncalibrated imagery of an extended scene. After decades of study, the classic problem of recovering camera motion from image correspondences remains an active area of research. This is due to the practical difficulties of estimating many interacting camera parameters under a variety of unknown imaging conditions. Projective geometry offers a useful framework for analyzing uncalibrated imagery. However, the associated multilinear models-the fundamental matrix and trifocal tensorare redundant in that they allow a camera configuration to vary along many more degrees of freedom than are geometrically admissible. This thesis presents a novel, minimal projective model of uncalibrated view triplets in terms of the dependent epipolar geometries among view pairs. By explicitly modeling the trifocal constraints among projective bifocal parameters-the epipoles and epipolar collineations-this model guarantees a solution that lies in the valid space of projective camera configurations. We present a nonlinear incremental algorithm for fitting the trifocally constrained epipolar geometries to observed image point matches. The minimal trifocal model is a practical alternative to the trifocal tensor for commonly found image sequences in which the availability of matched point pairs varies widely among different view pairs. Experimental results on synthetic and real image sequences with typical asymmetries in view overlap demonstrate the improved accuracy of the new trifocally constrained model.
(cont.) We provide an analysis of the objective function surface in the projective parameter space and examine cases in which the projective parameterization is sensitive to the Euclidean camera configuration. Finally, we present a new, numerically stable method for minimally parameterizing the epipolar geometry that gives improved estimates of minimal projective representations.
by Raquel A. Romano.
Ph.D.
Contatto, Felipe. "Vortices, Painlevé integrability and projective geometry". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.
Texto completoMarino, Nicholas John. "Vector Bundles and Projective Varieties". Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1544457943307018.
Texto completoBeardsley, Paul Anthony. "Applications of projective geometry to robot vision". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316854.
Texto completoO'Keefe, Christine M. "Concerning t-spreads of PG ((s + 1) (t + 1)- 1, q)". Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09pho41.pdf.
Texto completoNiall, Keith. "Projective invariance and visual perception". Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75782.
Texto completoHønsen, Morten. "Compactifying locally Cohen-Macaulay projective curves". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-470.
Texto completoEllis, Amanda. "Classification of conics in the tropical projective plane /". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.
Texto completoMcCallum, Rupert Gordon Mathematics & Statistics Faculty of Science UNSW. "Generalisations of the fundamental theorem of projective geometry". Publisher:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43385.
Texto completoHerman, Ivan. "The use of projective geometry in computer graphics /". Berlin ;Heidelberg ;New York ;London ;Paris ;Tokyo ;Hong Kong ;Barcelona ;Budapest : Springer, 1992. http://www.loc.gov/catdir/enhancements/fy0815/91043253-d.html.
Texto completoGoetz, Peter D. "The noncommutative algebraic geometry of quantum projective spaces /". view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3102165.
Texto completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 106-108). Also available for download via the World Wide Web; free to University of Oregon users.
Fleming, Patrick Scott. "Finite projective planes and related topics". Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1225126281&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Texto completoNOJA, SIMONE. "TOPICS IN ALGEBRAIC SUPERGEOMETRY OVER PROJECTIVE SPACES". Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/554352.
Texto completoThe aim of this thesis is to study some topics in algebraic supergeometry, in particular in the case the supermanifolds have their reduced manifolds given by complex projective spaces $\mathbb{P}^n$. After the main definitions and notions in supergeometry are introduced, the geometry of complex projective superspaces $\mathbb{P}^{n|m}$ is studied in detail. Invertible sheaves and their cohomology, infinitesimal automorphisms and deformations are studied for $\mathbb{P}^{n|m}$. Special attention is paid to the case of the Calabi-Yau supercurve $\mathbb{P}^{1|2}$. The focus is then moved to non-projected supermanifolds over $\mathbb{P}^n$. A complete classification is given in the case the odd dimension is $2$, showing that there exist non-projected supermanifolds only over the projective line $\mathbb{P}^1$ and projective plane $\mathbb{P}^2$. In particular, it is shown that all of the non-projected supermanifolds over $\mathbb{P}^2$ are Calabi-Yau's, i.e.\ they have trivial Berezinian sheaf, and they are all non-projective, i.e.\ they cannot be embedded into any ordinary projective superspace $\mathbb{P}^{n|m}$. Instead, it is shown that there always exist an embedding of these supermanifolds in super Grassmannians, and some meaningful examples are realised explicitly. Finally, a new construction of $\Pi$-projective spaces as non-projected supermanifolds related to the cotangent sheaf over $\mathbb{P}^n $ is given.
Oxenham, Martin Glen. "On n-covers of PG (3,q) and related structures /". Title page, contents and introduction only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09pho98.pdf.
Texto completoCook, Gary Russell. "Arcs in a finite projective plane". Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/7510/.
Texto completoFrost, George. "The projective parabolic geometry of Riemannian, Kähler and quaternion-Kähler metrics". Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690742.
Texto completoHeuel, Stephan. "[Uncertain projective geometry] [statistical reasoning for polyhedral object reconstruction]". [Berlin Heidelberg] [Springer], 2002. http://dx.doi.org/10.1007/b97201.
Texto completoHeuel, Stephan. "Uncertain projective geometry : statistical reasoning for polyhedral object reconstruction /". Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004104982-d.html.
Texto completoEskeland, II John T. "Searching for Constructed Form: A Station for Projective Geometry". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/78192.
Texto completoMaster of Architecture
Ruffoni, Lorenzo <1989>. "The Geometry of Branched Complex Projective Structures on Surfaces". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/7860/1/ruffoni_lorenzo_tesi.pdf.
Texto completoArsie, Alessandro. "On "special" embeddings in complex and projective algebraic geometry". Doctoral thesis, SISSA, 2001. http://hdl.handle.net/20.500.11767/4302.
Texto completoCastro, Renata Brandão de [UNESP]. "Tópicos da geometria projetiva". Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/94354.
Texto completoNeste projeto tratamos da Geometria Projetiva advinda da generalização da Geometria Afim do Plano Euclidiano. Estabelecemos um Sistema Axiomático para a Geometria Projetiva e provamos resultados de sustentabilidade para esta geometria, sobretudo resultados sobre Perspectivas e Projeções. Também exploramos Cônicas dentro deste contexto. O principal livro usado como referência deste trabalho foi [1] de Judith Cederberg e como textos auxiliares consultaremos [2] e [3]
This project dealt with the Projective Geometry arising from the generalization of the Affine Geometry of the Euclidean Plane. Established an Axiomatic System for Projective Geometry and prove sustainability outcomes for this geometry, particularly on results Prospects and Projections. We also explored conics within this context
Castro, Renata Brandão de. "Tópicos da geometria projetiva /". Rio Claro : [s.n.], 2012. http://hdl.handle.net/11449/94354.
Texto completoBanca: Grazielle Feliciani Barbosa
Banca: Carina Alves
Resumo: Neste projeto tratamos da Geometria Projetiva advinda da generalização da Geometria Afim do Plano Euclidiano. Estabelecemos um Sistema Axiomático para a Geometria Projetiva e provamos resultados de sustentabilidade para esta geometria, sobretudo resultados sobre Perspectivas e Projeções. Também exploramos Cônicas dentro deste contexto. O principal livro usado como referência deste trabalho foi [1] de Judith Cederberg e como textos auxiliares consultaremos [2] e [3]
Abstract: This project dealt with the Projective Geometry arising from the generalization of the Affine Geometry of the Euclidean Plane. Established an Axiomatic System for Projective Geometry and prove sustainability outcomes for this geometry, particularly on results Prospects and Projections. We also explored conics within this context
Mestre
Neretin, Yurii A. y Andreas Cap@esi ac at. "Geometry of GL$_n$(C) on Infinity: Hinges, Projective Compactifications". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi971.ps.
Texto completoShabbir, Ghulam. "Curvature and projective symmetries in space-times". Thesis, University of Aberdeen, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364690.
Texto completoPichanick, E. V. D. "Bounds for complete arcs in finite projective planes". Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/63459/.
Texto completoHamed, Zainab Shehab. "Arcs of degree four in a finite projective plane". Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/77816/.
Texto completoLeite, Douglas Gonçalves. "Método de perspectiva e Brouillon project : dois estudos de Desargues sobre perspectiva e geometria de projeções /". Rio Claro, 2018. http://hdl.handle.net/11449/154504.
Texto completoResumo: O presente trabalho discorre a respeito de dois textos do arquiteto e matemático francês Girard Desargues. As obras que aqui chamamos de Método de Perspectiva (1636) e Brouillon Project (1639), foram desenvolvidas em um período com ampla produção teórica relacionada a técnicas de representação. No trabalho de 1636 Desargues descreveu o processo necessário para representar uma gaiola em perspectiva. No trabalho, Brouillon Project, ele trata de propriedades geométricas envolvendo feixe de retas aproximando-se dos conceitos existentes no campo das projeções de figuras, contudo parte das referências utilizadas, como Chasles, Poudra, Taton, entre outros, consideraram que o Brouillon Project foi um trabalho relacionado as seções cônicas. Nosso objetivo é apresentar uma análise envolvendo os conteúdos geométricos explorados nas duas obras citadas com o intuito de relacioná-las com o campo da perspectiva e projeção de figuras. Para isso, desenvolvemos uma pesquisa em história da matemática envolvendo história perspectiva, história da geometria, forma de produção do conhecimento daquele período, em conjunto com teorias que estavam sendo produzidas até o séc. XVII
Abstract: The present work deals with two texts of the French architect and mathematician Girard Desargues. The works that we call the Method of Perspective (1636) and Brouillon Project (1639) were developed in a period with a large theoretical production related to representations of figures in perspective. In the work of 1636 Desargues described the process necessary to represent a cage in perspective. At work, Brouillon Project, he dealt with geometric properties involving beam of straight lines approaching the existing concepts in the field of projections of figures. However, some of the references used, such as Chasles, Poudra, Taton, and others, consider that the Brouillon Project was a work related to the conic sections. Our objective is to present a study involving the geometric contents explored in the two works mentioned, seeking to relate them to the field of perspective and projection of figures. For this, we developed a research in history of mathematics involving history, perspective, history of geometry, form of knowledge production of that period, together with theories that were being produced until the century. XVII
Mestre
Lo, Giudice Alessio. "Some topics on Higgs bundles over projective varieties and their moduli spaces". Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4100.
Texto completoFlórez, Rigoberto. "Four studies in geometry of biased graphs". Online access via UMI:, 2005.
Buscar texto completoHeuel, Stephan [Verfasser]. "[Uncertain projective geometry] : [statistical reasoning for polyhedral object reconstruction] / [Stephan Heuel]". [Berlin, 2004. http://d-nb.info/972277110/34.
Texto completoEllis, Amanda. "Classifcation of Conics in the Tropical Projective Plane". BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.
Texto completoYoon, Young-jin. "Characterizations of Some Combinatorial Geometries". Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc277894/.
Texto completoMcKinnon, David N. R. "The multiple view geometry of implicit curves and surfaces /". [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19677.pdf.
Texto completoPacker, S. "On sets of odd type and caps in Galois geometries of order four". Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262299.
Texto completoGiuzzi, Luca. "Hermitian varieties over finite fields". Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326913.
Texto completoTate, Dominic. "On the Fock-Goncharov Moduli Space for Real Projective Structures on Surfaces: Cell Decomposition, Buildings and Compactification". Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22342.
Texto completoHuang, Jen-Fa. "On finding generator polynomials and parity-check sums of binary projective geometry codes". Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/4800.
Texto completoWhite, Clinton T. Wilson R. M. "Two cyclic arrangement problems in finite projective geometry : parallelisms and two-intersection sets /". Diss., Pasadena, Calif. : California Institute of Technology, 2002. http://resolver.caltech.edu/CaltechETD:etd-06052006-143933.
Texto completoOliveira, Júnior José William de. "Três pontos de vista sobre cônicas". Mestrado Profissional em Matemática, 2018. http://ri.ufs.br/jspui/handle/riufs/9321.
Texto completoIn the present work, we tried to investigate the conics in the synthetic, analytical and projective contexts, as well as to know some applications and properties of these curves. In the synthetic approach, it was emphasized a lithe of the historical aspects, the works made by Apollonius and Dandelin, a characterization for tangent and normal lines and re ecting properties. In the analytical approach, the Cartesian, polar and parametric equations were described, as well as the applications in the Kepler Laws. In the projective approach, the concepts of projective plane, projective point, projective line and projective applications were used to give meaning to the conic in the projective universe, in addition the Theorews of Pascal and Brianchon were demonstrated.
No presente trabalho, procurou-se investigar as cônicas nos contextos sintético, analítico e projetivo, bem como conhecer algumas aplicações e propriedades dessas curvas. Na abordagem sintética, foram enfatizados um pouco do aspecto histórico, os trabalhos feitos por Apolônio e Dandelin, uma caracterização para retas tangentes e normais e as propriedades refletoras. Na abordagem analítica, foram descritas as equações cartesianas, polares e paramétricas, como também as aplicações nas Leis de Kepler. Na abordagem projetiva, foram trabalhados os conceitos de plano projetivo, ponto projetivo, reta projetiva e aplicações projetivas para dar significado as cônicas no universo projetivo, além disso foram demonstrados os teoremas de Pascal e Brianchon.
São Cristóvão, SE
Culbert, Craig W. "Spreads of three-dimensional and five-dimensional finite projective geometries". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 101 p, 2009. http://proquest.umi.com/pqdweb?did=1891555371&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Texto completoAbuaf, Roland. "Dualité homologique projective et résolutions catégoriques des singularités". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM057/document.
Texto completoLet $X$ be an algebraic variety with Gorenstein rational singularities. A crepant resolution of $X$ is often considered to be a minimal resolution of singularities for $X$. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras
Velebová, Jana. "Fotogrammetrická analýza obrazů". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-412846.
Texto completoVereecke, Sam K. J. "Some properties of arcs, caps and quadrics in projective spaces in finite order". Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263915.
Texto completoAndrade, Andréa Ferreira Faccioni de [UNESP]. "Um estudo da geometria projetiva elíptica". Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/134030.
Texto completoNeste trabalho realizamos o estudo da Geometria Elíptica baseado no livro Introdução à Geometria Projetiva de Abdênago Alves de Barros e Plácido Francisco de Assis Andrade. A fim de apresentar este tema de forma didática, desenvolvemos alguns tópicos da álgebra linear e da geometria analítica que serão utilizados no decorrer deste trabalho. A Geometria Projetiva Elíptica é dividida em duas frentes: a Geometria Elíptica Dupla e a Geometria Elíptica Simples. A Geometria Elíptica Dupla tem como modelo a esfera unitária S2 e a Geometria Elíptica Simples tem como modelo o plano projetivo RP2 que pode ser visto como a esfera unitária S2 com a relação de equivalência que identifica os pontos antípodas
We have made a study of projective elliptic geometry based on the book Introdução à Geometria Projetiva of Abdênago Alves de Barros and Plácido Francisco de Assis Andrade. In order to introduce this theme in a didactic way, we developed some topics of the linear algebra and of the analytic geometry, that will be used in this work. The projective elliptic geometry is divided in two approaches the double elliptic geometry and the simple elliptic geometry. The double elliptic geometry has as model the unit sphere S2 and the simple elliptic geometry has as model the real projective plane RP2; that is, the unit sphere S2 with the equivalence relation that identi es antipodal points
Andrade, Andréa Ferreira Faccioni de. "Um estudo da geometria projetiva elíptica /". Rio Claro, 2015. http://hdl.handle.net/11449/134030.
Texto completoBanca: Eliris Cristina Rizziolli
Banca: Marta Cilene Gadotti
Banca: Northon Canevari Leme Penteado
Resumo: Neste trabalho realizamos o estudo da Geometria Elíptica baseado no livro "Introdução à Geometria Projetiva" de Abdênago Alves de Barros e Plácido Francisco de Assis Andrade. A fim de apresentar este tema de forma didática, desenvolvemos alguns tópicos da álgebra linear e da geometria analítica que serão utilizados no decorrer deste trabalho. A Geometria Projetiva Elíptica é dividida em duas frentes: a Geometria Elíptica Dupla e a Geometria Elíptica Simples. A Geometria Elíptica Dupla tem como modelo a esfera unitária S2 e a Geometria Elíptica Simples tem como modelo o plano projetivo RP2 que pode ser visto como a esfera unitária S2 com a relação de equivalência que identifica os pontos antípodas
Abstract: We have made a study of projective elliptic geometry based on the book "Introdução à Geometria Projetiva" of Abdênago Alves de Barros and Plácido Francisco de Assis Andrade. In order to introduce this theme in a didactic way, we developed some topics of the linear algebra and of the analytic geometry, that will be used in this work. The projective elliptic geometry is divided in two approaches the double elliptic geometry and the simple elliptic geometry. The double elliptic geometry has as model the unit sphere S2 and the simple elliptic geometry has as model the real projective plane RP2; that is, the unit sphere S2 with the equivalence relation that identi es antipodal points
Mestre
Zeng, Rui. "Homography estimation: From geometry to deep learning". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134132/1/Rui_Zeng_Thesis.pdf.
Texto completoLai, Po-Lun. "Shape Recovery by Exploiting Planar Topology in 3D Projective Space". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1268187247.
Texto completo