Literatura académica sobre el tema "Geometry of null manifolds"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Geometry of null manifolds".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Geometry of null manifolds"
Atindogbé, C., M. Gutiérrez y R. Hounnonkpe. "Compact null hypersurfaces in Lorentzian manifolds". Advances in Geometry 21, n.º 2 (1 de abril de 2021): 251–63. http://dx.doi.org/10.1515/advgeom-2021-0001.
Texto completoMassamba, Fortuné. "Symmetries of Null Geometry in Indefinite Kenmotsu Manifolds". Mediterranean Journal of Mathematics 10, n.º 2 (24 de junio de 2012): 1079–99. http://dx.doi.org/10.1007/s00009-012-0205-5.
Texto completoHoffman, Neil R. y Nathan S. Sunukjian. "Null-homologous exotic surfaces in 4–manifolds". Algebraic & Geometric Topology 20, n.º 5 (4 de noviembre de 2020): 2677–85. http://dx.doi.org/10.2140/agt.2020.20.2677.
Texto completoCuadros Valle, Jaime. "Null Sasaki $$\eta $$ -Einstein structures in 5-manifolds". Geometriae Dedicata 169, n.º 1 (24 de abril de 2013): 343–59. http://dx.doi.org/10.1007/s10711-013-9859-9.
Texto completoAkamine, Shintaro, Atsufumi Honda, Masaaki Umehara y Kotaro Yamada. "Null hypersurfaces in Lorentzian manifolds with the null energy condition". Journal of Geometry and Physics 155 (septiembre de 2020): 103751. http://dx.doi.org/10.1016/j.geomphys.2020.103751.
Texto completoRovenski, Vladimir, Sergey Stepanov y Josef Mikeš. "A Note on the Geometry of Certain Classes of Lichnerowicz Laplacians and Their Applications". Mathematics 11, n.º 21 (26 de octubre de 2023): 4434. http://dx.doi.org/10.3390/math11214434.
Texto completoMassamba, Fortuné y Samuel Ssekajja. "Some Remarks on Quasi-Generalized CR-Null Geometry in Indefinite Nearly Cosymplectic Manifolds". International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9613182.
Texto completoMassamba, Fortuné y Samuel Ssekajja. "A geometric flow on null hypersurfaces of Lorentzian manifolds". Topological Algebra and its Applications 10, n.º 1 (1 de enero de 2022): 185–95. http://dx.doi.org/10.1515/taa-2022-0126.
Texto completoDuggal, K. L. "A Review on Unique Existence Theorems in Lightlike Geometry". Geometry 2014 (7 de julio de 2014): 1–17. http://dx.doi.org/10.1155/2014/835394.
Texto completoKim, Jin Hong. "On null cobordism classes of quasitoric manifolds and their small covers". Topology and its Applications 285 (noviembre de 2020): 107412. http://dx.doi.org/10.1016/j.topol.2020.107412.
Texto completoTesis sobre el tema "Geometry of null manifolds"
Vilatte, Matthieu. "Adventures in (thermal) Wonderland". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04791687.
Texto completoThe work we present in this thesis is structured around the concepts of field theories and geometry, which are applied to gravity and thermalisation.On the gravity side, our work aims at shedding new light on the asymptotic structure of the gravitational field in the context of asymptotically flat spacetimes, using information encoded on the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector field spanning the kernel of the latter. This vector selects a particular direction which can be the starting point for describing Carroll structures in a split frame. We first elaborate on the geometry one can construct on such a manifold in this frame, including a comprehensive study of connections and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical momenta conjugate to the geometry or the connection are introduced, and the variation of the action shall give their conservation equations, upon which isometric charges can be reached.Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics. This limit usually exhibits more Carrollian descendants than what might be expected from a naive intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for which two actions, electric and magnetic arise in the limit) and the Carrollian Chern-Simons action. The richness of the limiting procedure is due to this versatility in describing a palette of degrees of freedom. This turns out to be an awesome tool in studying the relationship between asymptotically anti de Sitter (AdS) and flat spacetimes.Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge, covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit on the boundary, while preserving this covariance feature. We demonstrate that the infinite solution space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite expansion resums), we use the Carrollian flux/balance laws together with the conservation of the energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely boundary perspective. Among them we recover the mass and angular momentum mutipolar moments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study exhaustively the case of Ehlers' $SL(2,mathbb{R})$ symmetry.On the side of thermal field theory we see that while at infinite temperature a CFT is described by its spectrum and the OPE coefficients, additional data is needed in the thermal case. These are the average values of primary operators, completely determined up to a constant coefficient. Numerical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually employed to uncover the latter. Our work features a new breadth. Starting from two coupled harmonic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This observation is the first step for setting a new correspondence between thermal partition functions and graphs
Iakovidis, Nikolaos. "Geometry of Toric Manifolds". Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277709.
Texto completoButtler, Michael. "The geometry of CR manifolds". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312247.
Texto completoWelly, Adam. "The Geometry of quasi-Sasaki Manifolds". Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20466.
Texto completoClancy, Robert. "Spin(7)-manifolds and calibrated geometry". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c37748b3-674a-4d95-8abf-7499474abce3.
Texto completoPena, Moises. "Geodesics on Generalized Plane Wave Manifolds". CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/866.
Texto completoTievsky, Aaron M. "Analogues of Kähler geometry on Sasakian manifolds". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45349.
Texto completoIncludes bibliographical references (p. 53-54).
A Sasakian manifold S is equipped with a unit-length, Killing vector field ( which generates a one-dimensional foliation with a transverse Kihler structure. A differential form a on S is called basic with respect to the foliation if it satisfies [iota][epsilon][alpha] = [iota][epsilon]d[alpha] = 0. If a compact Sasakian manifold S is regular, i.e. a circle bundle over a compact Kähler manifold, the results of Hodge theory in the Kahler case apply to basic forms on S. Even in the absence of a Kähler base, there is a basic version of Hodge theory due to El Kacimi-Alaoui. These results are useful in trying to imitate Kähler geometry on Sasakian manifolds; however, they have limitations. In the first part of this thesis, we will develop a "transverse Hodge theory" on a broader class of forms on S. When we restrict to basic forms, this will give us a simpler proof of some of El Kacimi-Alaoui's results, including the basic dd̄-lemma. In the second part, we will apply the basic dd̄-lemma and some results from our transverse Hodge theory to conclude (in the manner of Deligne, Griffiths, and Morgan) that the real homotopy type of a compact Sasakian manifold is a formal consequence of its basic cohomology ring and basic Kähler class.
by Aaron Michael Tievsky.
Ph.D.
Kotschick, Dieter. "On the geometry of certain 4 - manifolds". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236179.
Texto completoViaggi, Gabriele [Verfasser]. "Geometry of random 3-manifolds / Gabriele Viaggi". Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1208764896/34.
Texto completoBaier, P. D. "Special Lagrangian geometry". Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365884.
Texto completoLibros sobre el tema "Geometry of null manifolds"
1940-, Shiohama K., Japan Monbushō y Symposium on Differential Geometry (1988- ) (35th : 1988 : Shinshu University), eds. Geometry of manifolds. Boston: Academic Press, 1989.
Buscar texto completoCrittenden, Richard J., d. 1996., ed. Geometry of manifolds. Providence, R.I: American Mathematical Society, 2001.
Buscar texto completoBoyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.
Buscar texto completoLovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.
Buscar texto completoKock, Anders. Synthetic Geometry of Manifolds. Leiden: Cambridge University Press, 2009.
Buscar texto completoLovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.
Buscar texto completoEarle, Clifford J., William J. Harvey y Sevín Recillas-Pishmish, eds. Complex Manifolds and Hyperbolic Geometry. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/conm/311.
Texto completoBrozos-Vázquez, Miguel, Eduardo García-Río, Peter Gilkey, Stana Nikčević y Ramón Vázques-Lorenzo. The Geometry of Walker Manifolds. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-02397-2.
Texto completoSunada, Toshikazu, ed. Geometry and Analysis on Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0083042.
Texto completoMatić, Gordana y Clint McCrory, eds. Topology and Geometry of Manifolds. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/pspum/071.
Texto completoCapítulos de libros sobre el tema "Geometry of null manifolds"
Duggal, Krishan L. y Aurel Bejancu. "Geometry of Null Curves in Lorentz Manifolds". En Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, 52–76. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2_3.
Texto completoOlea, Benjamín. "Null Hypersurfaces on Lorentzian Manifolds and Rigging Techniques". En Lorentzian Geometry and Related Topics, 237–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66290-9_13.
Texto completoCarmo, Manfredo Perdigão do. "Differentiable Manifolds". En Riemannian Geometry, 1–34. Boston, MA: Birkhäuser Boston, 2013. http://dx.doi.org/10.1007/978-1-4757-2201-7_1.
Texto completoConlon, Lawrence. "Riemannian Geometry". En Differentiable Manifolds, 293–348. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.
Texto completoLang, Serge. "Manifolds". En Fundamentals of Differential Geometry, 22–42. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0541-8_2.
Texto completoLivingston, Charles. "Null-homologous unknottings". En Topology and Geometry, 59–68. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/irma/33-1/3.
Texto completoBallmann, Werner. "Manifolds". En Introduction to Geometry and Topology, 27–67. Basel: Springer Basel, 2018. http://dx.doi.org/10.1007/978-3-0348-0983-2_2.
Texto completoEschrig, Helmut. "Manifolds". En Topology and Geometry for Physics, 55–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14700-5_3.
Texto completoDragomir, Sorin y Liviu Ornea. "L.c.K. Manifolds". En Locally Conformal Kähler Geometry, 1–5. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2026-8_1.
Texto completoShafarevich, Igor R. "Complex Manifolds". En Basic Algebraic Geometry 2, 153–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57956-1_4.
Texto completoActas de conferencias sobre el tema "Geometry of null manifolds"
ROMERO, ANTONIO, ROCIO VELÁZQUEZ-MATA, ANTONIO TADEU y PEDRO GALVÍN. "ACOUSTIC WAVE SCATTERING BY NULL-THICKNESS BODIES WITH COMPLEX GEOMETRY". En BEM/MRM 47, 135–46. Southampton UK: WIT Press, 2024. http://dx.doi.org/10.2495/be470111.
Texto completoNAKOVA, Galia. "NULL CURVES ON THE UNIT TANGENT BUNDLE OF A TWO-DIMENSIONAL KÄHLER-NORDEN MANIFOLD". En 5th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220911_0008.
Texto completoMasa, Xosé, Enrique Macias-Virgós y Jesús A. Alvarez López. "Analysis and Geometry in Foliated Manifolds". En 7th International Collóquium on Differential Geometry. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814533119.
Texto completoPESTOV, IVANGOE B. "GEOMETRY OF MANIFOLDS AND DARK MATTER". En Proceedings of the 5th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810144_0016.
Texto completoARSLAN, KADRI y CENGIZHAN MURATHAN. "CONTACT METRIC R-HARMONIC MANIFOLDS". En Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0002.
Texto completoDefever, Filip, Ryszard Deszcz, Marian Hotloś, Marek Kucharski y Zerrin Şentürk. "ON MANIFOLDS OF PSEUDOSYMMETRIC TYPE". En Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0010.
Texto completoBoyom, Michel Nguiffo. "Some lagrangian invariants of symplectic manifolds". En Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-27.
Texto completoSadowski, Michał. "Holonomy groups of complete flat manifolds". En Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-28.
Texto completoBordoni, Manlio, Carlos Herdeiro y Roger Picken. "Construction of Isospectral Manifolds". En XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3599144.
Texto completoLibermann, Paulette. "Charles Ehresmann's concepts in differential geometry". En Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-2.
Texto completoInformes sobre el tema "Geometry of null manifolds"
Naber, Gregory. Invariants of Smooth Four-manifolds: Topology, Geometry, Physics. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-105-140.
Texto completoBeurlot, Kyle, Mark Patterson y Timothy Jacobs. PR-457-22210-R01 Effects of Inlet Port Geometry on MCC Mixing Sensitivity Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2024. http://dx.doi.org/10.55274/r0000061.
Texto completo