Literatura académica sobre el tema "Geometry"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Geometry".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Geometry"
Yasbiati, Yasbiati y Titi Nurhayati. "PENINGKATAN KEMAMPUAN MENGENAL BENTUK GEOMTETRI MELALUI MEDIA COLOUR GEOMETRY BOOK (Penelitian Tindakan Kelas pada Kelompok A TK Al-Abror Kecamatan Mangkubumi Kota Tasikmalaya Tahun 2016/2017)". JURNAL PAUD AGAPEDIA 2, n.º 1 (2 de mayo de 2020): 23–35. http://dx.doi.org/10.17509/jpa.v2i1.24385.
Texto completoPuspananda, Dian Ratna, Anis Umi Khoirutunnisa’, M. Zainudin, Anita Dewi Utami y Nur Rohman. "GEOMETRY TOWER ADVENTURE PADA ANAK USIA DINI DI DESA SUKOREJO KECAMATAN BOJONEGORO". J-ABDIPAMAS : Jurnal Pengabdian Kepada Masyarakat 1, n.º 1 (20 de octubre de 2017): 56. http://dx.doi.org/10.30734/j-abdipamas.v1i1.81.
Texto completoClements, Douglas C. y Michael Battista. "Geometry and Geometric Measurement". Arithmetic Teacher 33, n.º 6 (febrero de 1986): 29–32. http://dx.doi.org/10.5951/at.33.6.0029.
Texto completoRylov, Yuri A. "Geometry without topology as a new conception of geometry". International Journal of Mathematics and Mathematical Sciences 30, n.º 12 (2002): 733–60. http://dx.doi.org/10.1155/s0161171202012243.
Texto completoNingrum, Mallevi Agustin y Lailatul Asmaul Chusna. "INOVASI DAKON GEOMETRI DALAM MENSTIMULASI KEMAMPUAN MENGENAL BENTUK GEOMETRI ANAK USIA DINI". Kwangsan: Jurnal Teknologi Pendidikan 8, n.º 1 (5 de agosto de 2020): 18. http://dx.doi.org/10.31800/jtp.kw.v8n1.p18--32.
Texto completoMisni, Misni y Ferry Ferdianto. "Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang". Jurnal Fourier 8, n.º 2 (31 de octubre de 2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.
Texto completoKaldor, S. y P. K. Venuvinod. "Macro-level Optimization of Cutting Tool Geometry". Journal of Manufacturing Science and Engineering 119, n.º 1 (1 de febrero de 1997): 1–9. http://dx.doi.org/10.1115/1.2836551.
Texto completoMoretti, Méricles Thadeu y Adalberto Cans. "Releitura das Apreensões em Geometria e a Ideia de Expansão Figural a Partir dos Estudos de Raymond Duval". Jornal Internacional de Estudos em Educação Matemática 16, n.º 3 (26 de febrero de 2024): 303–10. http://dx.doi.org/10.17921/2176-5634.2023v16n3p303-310.
Texto completoJesus, Josenilton Santos de y Elias Santiago de Assis. "Aprendizagem de Geometria Esférica Por Meio do Geogebra". Jornal Internacional de Estudos em Educação Matemática 16, n.º 3 (26 de febrero de 2024): 353–62. http://dx.doi.org/10.17921/2176-5634.2023v16n3p353-362.
Texto completoLarke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry". Arithmetic Teacher 36, n.º 1 (septiembre de 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.
Texto completoTesis sobre el tema "Geometry"
Jadhav, Rajesh. "Geometric Routing Without Geometry". Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1178080572.
Texto completoFléchelles, Balthazar. "Geometric finiteness in convex projective geometry". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Texto completoThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Scott, Phil. "Ordered geometry in Hilbert's Grundlagen der Geometrie". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15948.
Texto completoLiu, Yang y 劉洋. "Optimization and differential geometry for geometric modeling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.
Texto completoGreene, Michael Thomas. "Some results in geometric topology and geometry". Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.
Texto completoLiu, Yang. "Optimization and differential geometry for geometric modeling". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988077.
Texto completoHidalgo, García Marta R. "Geometric constraint solving in a dynamic geometry framework". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134690.
Texto completoChuang, Wu-yen. "Geometric transitions, topological strings, and generalized complex geometry /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completoVilla, E. "Methods of geometric measure theory in stochastic geometry". Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Texto completoPersson, Aron. "On the Existence of Electrodynamics on Manifold-like Polyfolds". Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155488.
Texto completoDen här uppsatsen betraktar huruvida klassisk elektrodynamik kan generaliseras till en rumtid som lokalt byter dimension samt om detta är matematiskt möjligt. Nyligen har forskningen utvecklat en generalisering av släta mångfalder, så kallade M-polyfolds, vilka ger oss en tillräcklig grund för att göra detta till en fysikalisk möjlighet. Dessa M-polyfolds möjliggör förmågan att definiera hastigheten av en kurva som går igenom en dimensionellt varierande rumtid. Därutöver utvecklas vissa nödvändiga förlängningar av teorin om M-polyfolds, detta för att skräddarsy teorin till ett mer fysikaliskt ramverk. Därefefter avslutas uppsatsen genom att definiera Maxwells ekvationer på M-polyfolds.
Libros sobre el tema "Geometry"
Sal'kov, Nikolay. Geometry in education and science. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1158751.
Texto completoCollezione Maramotti (Gallery : Reggio Emilia, Italy), ed. Geometria figurativa: Figurative geometry. Cinisello Balsamo, Milano: Silvana editoriale, 2017.
Buscar texto completoPedoe, Daniel. Geometry: A comprehensive course. New York: Dover, 1988.
Buscar texto completoPedoe, Daniel. Geometry, a comprehensive course. New York: Dover Publications, 1988.
Buscar texto completoJost, Jürgen. Riemannian geometry and geometric analysis. 3a ed. New York: Springer, 2002.
Buscar texto completoW, Henderson David. Differential geometry: A geometric introduction. Upper Saddle River, N.J: Prentice Hall, 1998.
Buscar texto completoQuinto, Eric, Fulton Gonzalez y Jens Christensen, eds. Geometric Analysis and Integral Geometry. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/598.
Texto completoJost, Jürgen. Riemannian Geometry and Geometric Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03118-6.
Texto completoJost, Jürgen. Riemannian Geometry and Geometric Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61860-9.
Texto completoElkadi, Mohamed, Bernard Mourrain y Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.
Texto completoCapítulos de libros sobre el tema "Geometry"
Pütz, Ralph y Ton Serné. "Geometrie Geometry". En Rennwagentechnik - Praxislehrgang Fahrdynamik, 105–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16102-6_5.
Texto completoPütz, Ralph y Ton Serné. "Geometrie Geometry". En Rennwagentechnik - Praxislehrgang Fahrdynamik, 127–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26704-9_5.
Texto completoVince, John. "Geometry Using Geometric Algebra". En Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.
Texto completoWattenhofer, Mirjam, Roger Wattenhofer y Peter Widmayer. "Geometric Routing Without Geometry". En Structural Information and Communication Complexity, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11429647_24.
Texto completoWu, Wen-tsün. "Orthogonal geometry, metric geometry and ordinary geometry". En Mechanical Theorem Proving in Geometries, 63–113. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-6639-0_3.
Texto completoJost, Jürgen. "Geometry". En Geometry and Physics, 1–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_1.
Texto completoStillwell, John. "Geometry". En Numbers and Geometry, 37–67. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_2.
Texto completoBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol y Heiner Muehlig. "Geometry". En Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.
Texto completoBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol y Heiner Mühlig. "Geometry". En Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.
Texto completoHurlbert, Glenn H. "Geometry". En Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.
Texto completoActas de conferencias sobre el tema "Geometry"
Qing, Ni y Wang Zhengzhi. "Geometric invariants using geometry algebra". En 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Texto completoCaticha, Ariel. "Geometry from information geometry". En TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959050.
Texto completoIvic, Aleksandar. "Number of digital convex polygons inscribed into an (m,m)-grid". En Vision Geometry II. SPIE, 1993. http://dx.doi.org/10.1117/12.165003.
Texto completoAllili, Madjid. "A deformable model with topology analysis and adaptive clustering for boundary detection". En Vision Geometry XIV. SPIE, 2006. http://dx.doi.org/10.1117/12.642353.
Texto completoNguyen, Hung, Rolf Clackdoyle y Laurent Desbat. "Automatic geometric calibration in 3D parallel geometry". En Physics of Medical Imaging, editado por Hilde Bosmans y Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549568.
Texto completoPlauschinn, Erik. "Non-geometric fluxes and non-associative geometry". En Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0061.
Texto completoLima, Guilherme. "In-memory Geometry Converter". En In-memory Geometry Converter. US DOE, 2023. http://dx.doi.org/10.2172/2204991.
Texto completoFernández, M., A. Tomassini, L. Ugarte, R. Villacampa, Fernando Etayo, Mario Fioravanti y Rafael Santamaría. "On Special Hermitian Geometry". En GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146230.
Texto completoSzabo, Richard. "Higher Quantum Geometry and Non-Geometric String Theory". En Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.318.0151.
Texto completoLai, Y. K., S. M. Hu, D. X. Gu y R. R. Martin. "Geometric texture synthesis and transfer via geometry images". En the 2005 ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1060244.1060248.
Texto completoInformes sobre el tema "Geometry"
Chuang, Wu-yen y /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), junio de 2007. http://dx.doi.org/10.2172/909289.
Texto completoHeath, Daniel y Joshua Jacobs. Geometry Playground. Washington, DC: The MAA Mathematical Sciences Digital Library, noviembre de 2010. http://dx.doi.org/10.4169/loci003567.
Texto completoFoster, Karis. Exposed Geometry. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-975.
Texto completoUngar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.
Texto completoUngar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.
Texto completoEarnshaw, Connie. Overgrown geometry. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.5380.
Texto completoButler, Lee A. y Clifford Yapp. Adaptive Geometry Shader Tessellation for Massive Geometry Display. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2015. http://dx.doi.org/10.21236/ada616646.
Texto completoHansen, Mark D. Results in Computational Geometry: Geometric Embeddings and Query- Retrieval Problems. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1990. http://dx.doi.org/10.21236/ada230380.
Texto completoCONCEPT ANALYSIS CORP PLYMOUTH MI. Missile Geometry Package. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1989. http://dx.doi.org/10.21236/ada253181.
Texto completoZhanchun Tu, Zhanchun Tu. Geometry of Membranes. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-45-75.
Texto completo