Literatura académica sobre el tema "Geometric finiteness"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Geometric finiteness".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Geometric finiteness"

1

Lück, Wolfgang. "The Geometric Finiteness Obstruction." Proceedings of the London Mathematical Society s3-54, no. 2 (1987): 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Swarup, G. A. "Geometric finiteness and rationality." Journal of Pure and Applied Algebra 86, no. 3 (1993): 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tuschmann, Wilderich. "Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness." Mathematische Annalen 322, no. 2 (2002): 413–20. http://dx.doi.org/10.1007/s002080100281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Scott, G. P., and G. A. Swarup. "Geometric finiteness of certain Kleinian groups." Proceedings of the American Mathematical Society 109, no. 3 (1990): 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Grove, Karsten, Peter Petersen, and Jyh-Yang Wu. "Geometric finiteness theorems via controlled topology." Inventiones Mathematicae 99, no. 1 (1990): 205–13. http://dx.doi.org/10.1007/bf01234417.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kapovich, Michael, and Beibei Liu. "Geometric finiteness in negatively pinched Hadamard manifolds." Annales Academiae Scientiarum Fennicae Mathematica 44, no. 2 (2019): 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Torroba, Gonzalo. "Finiteness of flux vacua from geometric transitions." Journal of High Energy Physics 2007, no. 02 (2007): 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Proctor, Emily. "Orbifold homeomorphism finiteness based on geometric constraints." Annals of Global Analysis and Geometry 41, no. 1 (2011): 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Durumeric, Oguz C. "Geometric finiteness in large families in dimension 3." Topology 40, no. 4 (2001): 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Grove, Karsten, Peter Petersen V, and Jyh-Yang Wu. "Erratum to Geometric finiteness theorems via controlled topology." Inventiones mathematicae 104, no. 1 (1991): 221–22. http://dx.doi.org/10.1007/bf01245073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Geometric finiteness"

1

Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.

Texto completo
Resumen
Cette thèse est consacrée à l’étude des orbivariétés projectives convexes géométriquement finies, et fait suite aux travaux de Ballas, Cooper, Crampon, Leitner, Long, Marquis et Tillmann sur le sujet. Une orbivariété projective convexe est le quotient d’un ouvert convexe et borné d’une carte affine de l’espace projectif réel (appelé aussi ouvert proprement convexe) par un groupe discret de transformations projectives préservant cet ouvert. S’il n’y a pas de segment dans le bord du convexe, on dit que l’orbivariété est strictement convexe, et si de plus il y a un unique hyperplan de support en cha
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kuckuck, Benno. "Finiteness properties of fibre products." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.

Texto completo
Resumen
A group Γ is of type F<sub>n</sub> for some n ≥ 1 if it has a classifying complex with finite n-skeleton. These properties generalise the classical notions of finite generation and finite presentability. We investigate the higher finiteness properties for fibre products of groups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bowditch, B. H. "Geometrical finiteness for hyperbolic groups." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.

Texto completo
Resumen
In this paper, we describe various definitions of geometrical finiteness for discrete hyperbolic groups in any dimension, and prove their equivalence. This generalises what has been worked out in two and three dimensions by Marden. Beardon, Maskit, Thurston and others. We also discuss the nature of convex fundamental domains for such groups. We begin the paper with a discussion of results related to the Margulls Lemma and Bieberbach Theorems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Passaro, Davide. "Finiteness of Complete Intersection Calabi Yau Threefolds." Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.

Texto completo
Resumen
Of many modern constructions in geometry Calabi Yau manifolds hold special relevance in theoretical physics. These manifolds naturally arise from the study of compactification of certain string theories. In particular Calabi Yau manifolds of dimension three, commonly known as threefolds, are widely used for compactifications of heterotic string theories. Among the many constructions, that of complete intersection Calabi Yau manifolds (CICY) is generally regarded to be the simplest. Furthermore, CICY threefolds have been proven to exist only in finite number. In the following text CICY manifold
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Marseglia, Stéphane. "Variétés projectives convexes de volume fini." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.

Texto completo
Resumen
Cette thèse est consacrée à l'étude des variétés projectives strictement convexes de volume fini. Une telle variété est le quotient G\U d'un ouvert proprement convexe U de l'espace projectif réel RP^(n-1) par un sous-groupe discret sans torsion G de SLn(R) qui préserve U. Dans un premier temps, on étudie l'adhérence de Zariski des holonomies de variétés projectives strictement convexes de volume fini. Pour une telle variété G\U, on montre que, soit G est Zariski-dense dans SLn(R), soit l'adhérence de Zariski de G est conjuguée à SO(1,n-1). On s'intéresse ensuite à l'espace des modules des stru
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hung, Min Kai, and 洪旻楷. "On the finiteness of geometric knots." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.

Texto completo
Resumen
碩士<br>國立臺灣師範大學<br>數學系<br>98<br>In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

"Survey on the finiteness results in geometric analysis on complete manifolds." 2010. http://library.cuhk.edu.hk/record=b5894429.

Texto completo
Resumen
Wu, Lijiang.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.<br>Includes bibliographical references (leaves 102-105).<br>Abstracts in English and Chinese.<br>Chapter 0 --- Introduction --- p.6<br>Chapter 1 --- Background knowledge --- p.9<br>Chapter 1.1 --- Comparison theorems --- p.9<br>Chapter 1.2 --- Bochner techniques --- p.13<br>Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14<br>Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16<br>Chapter 2 --- Vanishing theorems --- p.20<br>Chapter 2.1 --- Liouville type th
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Geometric finiteness"

1

Marco, Rigoli, and Setti Alberto G. 1960-, eds. Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique. Birkhauser, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Session, Ring Theory. Ring theory and its applications: Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Edited by Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation, and Ohio State-Denison Mathematics Conference. American Mathematical Society, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Vanishing and Finiteness Results in Geometric Analysis. Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pigola, Stefano, Marco Rigoli, and Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Springer London, Limited, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Witzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hrushovski, Ehud, and François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.

Texto completo
Resumen
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.

Texto completo
Resumen
This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Geometric finiteness"

1

Katz, Nicholas M., Serge Lang, and Kenneth A. Ribet. "Finiteness Theorems in Geometric Classfield Theory." In Collected Papers Volume III. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lang, Serge. "Finiteness Theorems in Geometric Classfield Theory." In Springer Collected Works in Mathematics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Suciu, Alexander I. "Geometric and homological finiteness in free abelian covers." In Configuration Spaces. Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Andrzejewski, Pawel. "Equivariant finiteness obstruction and its geometric applications - A survey." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Schlomiuk, Dana. "Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric." In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Görtz, Ulrich, and Torsten Wedhorn. "Finiteness Conditions." In Algebraic Geometry I. Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Faltings, Gerd. "Finiteness Theorems for Abelian Varieties over Number Fields." In Arithmetic Geometry. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zarhin, Yuri G. "Finiteness theorems for dimensions of irreducible λ-adic representations." In Arithmetic Algebraic Geometry. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Besson, Gérard, and Gilles Courtois. "Compactness and Finiteness Results for Gromov-Hyperbolic Spaces." In Surveys in Geometry I. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ollivier, François. "Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms." In Effective Methods in Algebraic Geometry. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Geometric finiteness"

1

Koike, Satoshi. "Finiteness theorems on Blow-Nash triviality for real algebraic singularities." In Geometric Singularity Theory. Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bejan, Adrian, and Sylvie Lorente. "A Course on Flow-System Configuration and Multi-Scale Design." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.

Texto completo
Resumen
This paper brings to the attention of the AES community our experience with developing and trying out a new course that focuses on the generation of system configuration (geometry, architecture, and drawing) during the optimization of performance. The configuration is free to morph. Real systems are destined to remain imperfect because of finiteness constraints. They are plagued by resistances to the flow of fluid, heat, and electricity. Resistances are always finite because of constraints. The balancing and distributing of resistances (irreversibility) through the available volume is the mech
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Martinez, Rudolph, Brent S. Paul, Morgan Eash, and Carina Ting. "A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution: Part 1—Theory." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.

Texto completo
Resumen
This work, the first of two parts, presents the development of a new analytic solution of acoustic scattering and/or radiation by arbitrary bodies of revolution under heavy fluid loading. The approach followed is the construction of a three-dimensional Wiener-Hopf technique with Fourier transforms that operate on the finite object’s arclength variable (the object’s practical finiteness comes about, in a Wiener-Hopf sense, by formally bringing to zero the radius of its semi-infinite generator curve for points beyond a prescribed station). Unlike in the classical case of a planar semi-infinite g
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!