Siga este enlace para ver otros tipos de publicaciones sobre el tema: Geographic information system.

Artículos de revistas sobre el tema "Geographic information system"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Geographic information system".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Srikanth, Dr Geetha. "Geographic Information System (GIS) in Public Health". JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 06, n.º 1 (15 de marzo de 2016): 1–2. http://dx.doi.org/10.58739/jcbs/v06i1.7.

Texto completo
Resumen
Remote sensing and geographic information system (GIS) are a potential enabling technolo-gy used in public health. With the precise geo-graphic location of the incident these technolo-gies are potentially useful for infectious dis-ease surveillance and control of vector borne diseases. GIS is a computer system for captur-ing and displaying data related to positions on earth’s surface. Since many different kinds of data are shown on a map one can analyze their patterns and relationships
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fan, Yong-wen, Wei-jun Zhu y Shao-huan Ban. "Mimic Geographic Information System". E3S Web of Conferences 78 (2019): 03005. http://dx.doi.org/10.1051/e3sconf/20197803005.

Texto completo
Resumen
With the development of the Internet, the geographic information system gets a chance to develop rapidly. Aiming at the security problems of existing geographic information systems, a Mimic Geographic Information System, i.e. M-GIS, based on mimic defense is proposed to improve the security of geographic information systems. The system consists of heterogeneous redundancy geographic information execution bodies pool, request distributor, scheduler and arbiter. Firstly, the scheduler dynamically selects the geographic information execution bodies set for processing, and then makes a mimic decision on the processing results. The experimental results show that the mimic system is more security than traditional system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Harvey, Francis. "From Geographic Holism to Geographic Information System". Professional Geographer 49, n.º 1 (febrero de 1997): 77–85. http://dx.doi.org/10.1111/0033-0124.00058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Patil, Mrs Shweta y A. R. Kambekar. "Floodplain Mapping Using Hydraulic Simulation and Geographic Information System". Indian Journal Of Science And Technology 15, n.º 39 (21 de octubre de 2022): 2027–36. http://dx.doi.org/10.17485/ijst/v15i39.1056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Unel, F. B., I. B. Gundogdu y S. Yalpir. "The Impact of Multimedia Geographic Information System in Tourism". International Journal of Computer Theory and Engineering 7, n.º 1 (febrero de 2014): 81–85. http://dx.doi.org/10.7763/ijcte.2015.v7.935.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hess, Ronald L., Ronald S. Rubin y Lawrence A. West. "Geographic information systems as a marketing information system technology". Decision Support Systems 38, n.º 2 (noviembre de 2004): 197–212. http://dx.doi.org/10.1016/s0167-9236(03)00102-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Veshtort, A. M., S. I. Kashkevich, S. B. Kostyukevich, V. V. Krasnoproshin y S. G. Sinyakovich. "A GEOGRAPHIC INFORMATION SYSTEM FOR PHYSICAL-GEOGRAPHIC REGIONALIZATION". Mapping Sciences and Remote Sensing 25, n.º 4 (octubre de 1988): 284–90. http://dx.doi.org/10.1080/07493878.1988.10641729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

WANG, Xiao-Jun. "Participatory geographic information system review". Chinese Journal of Eco-Agriculture 18, n.º 5 (10 de diciembre de 2010): 1138–44. http://dx.doi.org/10.3724/sp.j.1011.2010.01138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Koeva, M. "GEOGRAPHIC INFORMATION SYSTEM – TOBEL". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-4/W1 (6 de mayo de 2013): 37–40. http://dx.doi.org/10.5194/isprsarchives-xl-4-w1-37-2013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Varushenko, S. S. "Domestic Geographic Information System AXIOM". Geodesy and Cartography 906, n.º 13 (29 de febrero de 2016): 32–33. http://dx.doi.org/10.22389/0016-7126-2015-32-33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

ORIKASA, Kouhei y Hiroshi MURAKAMI. "Outline of Geographic Information System." Journal of Veterinary Epidemiology 3, n.º 2 (1999): 101–6. http://dx.doi.org/10.2743/jve.3.101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

KUBO, Sachio. "Multi-media Geographic Information System." Journal of the Japan society of photogrammetry and remote sensing 30, n.º 6 (1991): 47–53. http://dx.doi.org/10.4287/jsprs.30.6_47.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Terrell, T. J. "Building a geographic information system". IEEE Computer Applications in Power 4, n.º 3 (julio de 1991): 50–54. http://dx.doi.org/10.1109/67.85964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Dewa, P., B. Mulyanti y I. Widiaty. "Geographic information system in education". IOP Conference Series: Materials Science and Engineering 830 (19 de mayo de 2020): 042097. http://dx.doi.org/10.1088/1757-899x/830/4/042097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

DJAMALUDDIN, IBRAHIM, POPPY INDRAYANI, YASUHIRO MITANI, SHUICHIRO TAGANE y TETSUKAZU YAHARA. "GEOGRAPHIC INFORMATION SYSTEM (GIS) WEB SERVER FOR BIODIVERSITY INFORMATION SYSTEM". REINWARDTIA 14, n.º 2 (4 de enero de 2016): 249. http://dx.doi.org/10.14203/reinwardtia.v14i2.1668.

Texto completo
Resumen
DJAMALUDDIN, I., INDRAYANI, P., MITANI, Y., TAGANE, S. & YAHARA, T. 2015. Geographic Information System (GIS) web server for biodiversity information system. Reinwardtia 14 (2): 249 - 258. - Ecological protection strategies, designed by sharing information and integrating data, play an important role in defining interconnections and interdependencies in research as well as in increasing global awareness. The Geographic Information System (GIS) web server is one technology solution to improve the interoperability and sharing between the biodiversity databases of an organization and the databases of other research groups. In this paper, a database system integration framework based on GIS technology and a GIS server system using the latest cloud-based technology have been developed to incorporate biodiversity databases in Asian region. A GIS server is a GIS web platform integrating multiple geodatabases and provides data display and query, allowing users to apply internet browsers to manipulate the functions and query the data, etc. To demonstrate the effectiveness of a GIS web server, plant biodiversity survey dataset of Mt. Gede Pangrango, West Java in Indonesia, was given as a case study for development and utilization of biodiversity information system in Asian region.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Bizjak, Igor. "More than a Geographic information system". Urbani izziv 19, n.º 1 (2008): 104–9. http://dx.doi.org/10.5379/urbani-izziv-en-2008-19-01-012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Subarkah, Krisna y Muhammad Lulu Latif Usman. "Tourist Geographic Information System in Baturaden". Journal of Informatics, Information System, Software Engineering and Applications (INISTA) 4, n.º 2 (6 de junio de 2022): 55–63. http://dx.doi.org/10.20895/inista.v4i2.529.

Texto completo
Resumen
As the largest archipelago country in the world, Indonesia has many tourist attractions. One of the tours in Indonesia is tourism in the Baturaden area. To increase tourism promotion and management, a supporting application is needed, one of which is by using WebGIS. This WebGIS application is then used as a medium for spatial information for mapping tourism in Baturaden. The method used in this research is to use the Agile model development method using BlackBox testing. The results of this study are in the form of a WebGIS application prototype for tourism mapping in Baturaden, which is declared valid using BlackBox testing. As the largest archipelago country in the world, Indonesia has many tourist attractions. One of the tours in Indonesia is tourism in the Baturaden area. To increase tourism promotion and management, a supporting application is needed, one of which is by using WebGIS. This WebGIS application is then used as a medium for spatial information for mapping tourism in Baturaden. The method used in this research is to use the Agile model development method using BlackBox testing. The results of this study are in the form of a WebGIS application prototype for tourism mapping in Baturaden, which is declared valid using BlackBox testing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Burke, Robin, Penny Masuoka y K. Darwin Murrell. "SwineTrichinellaInfection and Geographic Information System Tools". Emerging Infectious Diseases 14, n.º 7 (julio de 2008): 1109–11. http://dx.doi.org/10.3201/eid1407.071538.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Smyrnew, John M. "Trends in Geographic Information System Technology". Journal of Surveying Engineering 116, n.º 2 (mayo de 1990): 105–11. http://dx.doi.org/10.1061/(asce)0733-9453(1990)116:2(105).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ahmad, Imran, Mithas Ahmad Dar, Tesfa Gebrie Andualem y Afera Halefom Teka. "Groundwater development using geographic information system". Applied Geomatics 12, n.º 1 (23 de julio de 2019): 73–82. http://dx.doi.org/10.1007/s12518-019-00283-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Muthanna, Gawaher y M. S. M. Amin. "Irrigation planning using geographic information system". Management of Environmental Quality: An International Journal 16, n.º 4 (agosto de 2005): 347–61. http://dx.doi.org/10.1108/14777830510601226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Shishinashvili, Manuchar Tamazovich. "MOTOR ROADS AND GEOGRAPHIC INFORMATION SYSTEM". Theoretical & Applied Science 54, n.º 10 (30 de octubre de 2017): 59–61. http://dx.doi.org/10.15863/tas.2017.10.54.13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Pramuditha Shinta Dewi Puspitasari, Arvita Agus Kurniasari y Trismayanti Dwi Puspitasari. "Geographic Information System Mapping of Plantation". Journal of Applied Science, Engineering, Technology, and Education 4, n.º 2 (27 de octubre de 2022): 210–22. http://dx.doi.org/10.35877/454ri.asci1162.

Texto completo
Resumen
Perusahaan Daerah Perkebunan (PDP) Kahyangan is a Regional Owned Enterprise in Jember Regency which was formed to realize the prosperity of the community. In Regional Regulation Number 2 of 2012-chapter 3 clauses 2, the government can manage regional finances by exploring sources of Regional Original Income, one of which is from the PDP. In addition, the purpose of the establishment of the PDP is as a means of developing the economy in the context of regional development by increasing productivity from all aspects to increase regional income. The main commodities are coffee and rubber, cloves, Mahoni, and Sengon wood are supporting commodities. Based on interviews PDP's profit contribution to Jember's income has continued to decline in recent years due to the absence of good management of its potential. So, this research will manage a system that can assist in obtaining information about the distribution of plantation land commodities in Jember, as well as mapping existing commodities by Geographic Information System (GIS). The method for developing GIS uses a Design Sprint. The output of this method prototypes and will implement in the GIS application.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Morehouse, Scott. "The ARC/INFO geographic information system". Computers & Geosciences 18, n.º 4 (mayo de 1992): 435–41. http://dx.doi.org/10.1016/0098-3004(92)90073-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

KIRIMURA, Takashi. "Yano, K.: GIS: Geographic Information System". Geographical review of Japan series A 95, n.º 3 (1 de mayo de 2022): 227–28. http://dx.doi.org/10.4157/grj.95.227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tongkaw, Sasalak. "Management Information Systems and Geographic Information System for Managing Durian Resources". Annals of Emerging Technologies in Computing 5, n.º 5 (20 de marzo de 2021): 41–50. http://dx.doi.org/10.33166/aetic.2021.05.005.

Texto completo
Resumen
The objective of this research is to develop the data for durian resources with a data collection system via the web-based system and the development of geographic information systems for durian resource management, and the local wisdom of Thai durian gardeners by designing the implement in the same database system, then presenting the durian data in southern Thailand by linking the geographic information system visualization to the map. In this research, the system method is designed using the System Development Life Cycle (SDLC), which includes six steps: requirement gathering and analysis, system design, implementation, integration and testing, development of a system, and maintenance. The results will show the visualization from both systems form and provide the report data with durian gardeners' needs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

He, Shaofu y Fei Li. "Artificial Neural Network Model in Spatial Analysis of Geographic Information System". Mobile Information Systems 2021 (15 de octubre de 2021): 1–12. http://dx.doi.org/10.1155/2021/1166877.

Texto completo
Resumen
In the past two decades, the computer technology industry has developed rapidly, and the geological prospecting industry is also undergoing a computerized and electronic revolution. The application technology of new geological information systems is gradually adding us to the spatial information system of geological prospecting projects. In order to deeply study the current situation of the artificial neural network model in the spatial analysis of our country’s geographic information system, this paper uses the traditional classification analysis method; database analysis and neural network analysis method of compensating samples were collected, an artificial model of the network is established, and the algorithm is simplified. And a neural network model is created. In the research of A and B counties’ geographic information system, using a new network model, 61 geological disasters were found in County A, of which 47 were landslides, 4 collapses, and 10 unstable slopes. There were 19 geographical disasters in County B, including 9 unstable slopes, 6 landslides and 4 collapses. In terms of geographic prediction combined with the network model, the comparison with the actual situation shows that the geographical distribution is 99.7% in the geographical and geological disaster-prone areas, and the geographical distribution is less in the nonprone areas, with a proportion of 0.3%. Geological disaster-prone areas of low points accounted for 76.9%, and the number of disaster-affected points in the low-prone areas accounted for 22.8%. The geographical and geological grades divided by the evaluation model are basically consistent with the actual grades, which can meet the needs of geographic evaluation. It is basically realized that starting from the model’s geographic information system, a more comprehensive and practical artificial neural network model is designed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Pollock, Richard J. y John D. McLaughlin. "Data‐Base Management System Technology and Geographic Information Systems". Journal of Surveying Engineering 117, n.º 1 (febrero de 1991): 9–26. http://dx.doi.org/10.1061/(asce)0733-9453(1991)117:1(9).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Limgomonvilas, Teerawate. "Integrated geographic information systems for agricultural drip system development". Journal of Applied Science 16, n.º 2 (6 de diciembre de 2017): 65–78. http://dx.doi.org/10.14416/j.appsci.2017.11.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Ramadhani, Nur Rachmat Fajar, Eka Prasetyaningrum y Lukman Bachtiar. "Sistem Informasi Geografis Apotek di Kotawaringin Timur Berbasis Web". Building of Informatics, Technology and Science (BITS) 2, n.º 2 (10 de diciembre de 2020): 141–50. http://dx.doi.org/10.47065/bits.v2i2.549.

Texto completo
Resumen
Geographical Information System is an information system that is specialized in processing data that has spatial information (spatial reference). In a narrower sense, a Geographical Information System is a computer system that has the ability to build, store, manage and display geographic information, for example, data that is identified according to its location in a database. The purpose of this geographic information system is to find out information on the location of the distribution of pharmacies and drug data information in East Kotawaringin, so as to help people and people who are not native to East Kotawaringin. The development of a web-based pharmacy geographic information system in East Kotawaringin uses the programming language PHP and MySQL as the database system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zeniarja, Junta, Ardytha Luthfiarta y Catur Supriyanto. "Naive Bayes Classifier Based Geographic Information System for University Search Information". Journal of Applied Intelligent System 2, n.º 2 (3 de agosto de 2018): 73–79. http://dx.doi.org/10.33633/jais.v2i2.1587.

Texto completo
Resumen
Information about the geographical location of universities is necessary for graduates of Senior High School who want to continue their education to a university. Most of the graduate students do not know the location of the universities since the geographical location of Google Maps is less clear and less precise. Therefore, the application of Geographic Information Systems (GIS) based on Information Retrieval (IR) is expected to facilitate the graduate students to know the exact location of the university. In this paper, IR-based GIS application is developed by using web programming. The web is used as a search engine when someone wants to find a college. The application shows the map and information of the college in the area according to the query of the user. Naive Bayes algorithm is used to classify the user query and locate the query on the map. Based on our prototype, the application is promising to be implemented for the student.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Allaw, Kamel, Jocelyne Adjizian Gerard, Makram Zouheir Chehayeb y Nada Badaro Saliba. "Population estimation using geographic information system and remote sensing for unorganized areas". Geoplanning: Journal of Geomatics and Planning 7, n.º 2 (1 de enero de 2021): 75–86. http://dx.doi.org/10.14710/geoplanning.7.2.75-86.

Texto completo
Resumen
Population estimation using remotely sensed data has been largely discussed in the literature relative to human geography. However, the previously established models can be applied on organized areas (mainly urban areas) but they are not suitable for unorganized areas which already suffer from a lack of population data. So, the aim of this study is the establish a statistical model for population estimation based on remote sensing data and suitable for unorganized areas. To do so, the morphological characteristics have been studied and a bivariate analysis was carried out to determine factors having a strong relationship with population data as a first step. Second, factors with strongest correlations have been chosen to establish the required model. As a result, an equation has been generated which relates the population data to building volume, density of roads, number of nodes, actual urban areas, and urban trend.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Agcaoili, Shirly. "Analysis on the Land Suitability for Coconut Cultivation using Geographic Information System". Indian Journal Of Science And Technology 16, n.º 20 (27 de mayo de 2023): 1477–86. http://dx.doi.org/10.17485/ijst/v16i20.1199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Whei-Min Lin, Ming-Tong Tsay y Su-Wei Wu. "Application of geographic information system to distribution information support". IEEE Transactions on Power Systems 11, n.º 1 (1996): 190–97. http://dx.doi.org/10.1109/59.486095.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Hassan, R. F. y M. S. Mohammed. "Information Hiding Using Geographic Information System (GIS) Vector File". Engineering and Technology Journal 35, n.º 2B (1 de febrero de 2017): 182–88. http://dx.doi.org/10.30684/etj.2017.138666.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Gao, Zhao Zhong y Hai Xia Wei. "Implementation of Urban 3D Geographic Information System". Advanced Materials Research 926-930 (mayo de 2014): 721–24. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.721.

Texto completo
Resumen
With the digital development of city construction, the construction of three-dimensional Geographic Information System plays an important role for the urban construction planning and decision-making. 3D urban planning geographic information management systems need to be able to put different spatial data, information of urban construction, urban planning information into the same platform. The integration of information resources whick provids a variety of spatial information based on the intelligent application services is the core. This article puts urban planning geographic information management related to business needs in-depth analysis, and put forward a three-dimensional geographic information model which is used for integrated management of data and can be dynamically adjusted for urban planning and management of business processes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Nengsih, Warnia. "Forecasting Analysis on Land Detection System Based on Geographic Information System". IJITEE (International Journal of Information Technology and Electrical Engineering) 1, n.º 3 (4 de enero de 2018): 71. http://dx.doi.org/10.22146/ijitee.31954.

Texto completo
Resumen
Geographic Information System (GIS) is an information system that performs geographic-based data visualization. The system performs mapping between various data points based on geographical location. Difficulties in mapping land in a region is the basis for the development of GIS applications for the detection of land. This system does not only detect vacant land in a region, but it also provides identification of land, and provides information about the size of the land, the land position, as well as access to nearby public facilities. The system is developed using a mobile platform as a value system that is more flexible and dynamic. For the analysis of the forecasting in an area uses a multiple regression method involving three independent variables, namely the use of dry land, the use of building land and land use. The results of the predictive forecasting provides location points of interest and public facilities located in the location which make it easy to give consideration in selecting a location which is appropriate to build.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Taravat, Alireza, Alireza Shahrjerdi y Maryam Pourhassan. "Health geographic information system and HIV/AIDS". Indian Journal of Sexually Transmitted Diseases and AIDS 32, n.º 2 (2011): 141. http://dx.doi.org/10.4103/0253-7184.85436.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bazurto, José Javier Bravo, Victor Alfonso Martínez Falcones, María Rodríguez Gámez y María Giuseppina Vanga Arvelo. "Geographic information system for manabí sustainable development". International research journal of management, IT and social sciences 6, n.º 6 (10 de septiembre de 2019): 17–28. http://dx.doi.org/10.21744/irjmis.v6n6.741.

Texto completo
Resumen
One of the barriers that are recognized based on the sustainable development of the territories is related to the lack of information. This research aims to design a Geographic Information System for information management of Renewable Energy Sources (FRE), which improve its quality, energy efficiency and enhance the diversification of generation sources in the province of Manabí, Ecuador. Following a documentary and applied research, the proposed system will be shown through a GeoWeb where it is intended to replace the manual way of updating information regarding FRE, conventional energy sources and renewable potentials by an automated system, with greater consistency and facilitating the handling and access to information quickly and safely; In addition to making viable the decision-making and the conception of strategies, with an integrating vision that allows to move from the current energy model that is based on fossil fuels to an energy-sustainable one.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Usmani, Raja Sher Afgun, Ibrahim Abaker Targio Hashem, Thulasyammal Ramiah Pillai, Anum Saeed y Akibu Mahmoud Abdullahi. "Geographic Information System and Big Spatial Data". International Journal of Enterprise Information Systems 16, n.º 4 (octubre de 2020): 101–45. http://dx.doi.org/10.4018/ijeis.2020100106.

Texto completo
Resumen
Geographic information system (GIS) is designed to generate maps, manage spatial datasets, perform sophisticated “what if” spatial analyses, visualize multiple spatial datasets simultaneously, and solve location-based queries. The impact of big data is in every industry, including the GIS. The location-based big data also known as big spatial data has significant implications as it forces the industry to contemplate how to acquire and leverage spatial information. In this study, a comprehensive taxonomy is created to provide a better understanding of the uses of GIS and big spatial data. The taxonomy is made up of big data technologies, GIS data sources, tools, analytics, and applications. The authors look into the importance of big spatial data and its implications, review the data sources, and GIS analytics, applications, and GIS tools. Furthermore, in order to guide researchers interested in GIS, the challenges that require substantial research efforts are taken into account. Lastly, open issues in GIS that require further observation are summarized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chaudary, Jatin. "Use of geographic information system in dentistry". Journal of Indian Association of Public Health Dentistry 18, n.º 4 (2020): 325. http://dx.doi.org/10.4103/jiaphd.jiaphd_117_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Alattar, Mohammad Anwar, Mark Beecroft y Caitlin Cottrill. "Geographic Information System and Atomized Transportation Modes". Encyclopedia 2, n.º 2 (25 de mayo de 2022): 1069–81. http://dx.doi.org/10.3390/encyclopedia2020070.

Texto completo
Resumen
Transportation is a spatial activity. The geographic Information System (GIS) is the process of capturing, managing, analyzing, and presenting spatial data. GIS techniques are essential to the study of various aspects of transportation. In this entry, the state of knowledge regarding atomized transportation modes is presented. Atomized transportation modes are defined as transportation modes which deal with low passenger numbers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

He, Wengting. "Geographic Information System-based watershed geomorphic mapping". DESALINATION AND WATER TREATMENT 241 (2021): 216–22. http://dx.doi.org/10.5004/dwt.2021.27565.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wiyanda, Agung, Suswanto y F. V. Astrolabe Sian Prasetya. "Development Tourism Geographic Information System of Samarinda". TEPIAN 3, n.º 1 (1 de marzo de 2022): 13–23. http://dx.doi.org/10.51967/tepian.v3i1.689.

Texto completo
Resumen
This research is motivated by the low level of dissemination of tourism information in the city of Samarinda. Samarinda is one of the cities with very diverse and interesting tourism potentials to explore. The beauty of the urban area and being one of the cities that is crossed by the largest river in the province of East Kalimantan, namely the Mahakam river, makes it one of the tourist destinations that has its own charm, but unfortunately at this time the tourism places in the city of Samarinda have not been widely publicized due to lack of information. About tourism that is given to the public and there are also some places that have not been or have just been opened to become tourist sites. This study uses spatial data in the form of location coordinates and non-spatial data in the form of attribute data including tourist names, addresses, and types of tours, descriptions and pictures. Making the Samarinda City Tourism Geographic Information System website using the Leaflet API as a base map. The database created using PHPMyAdmin on the Samarinda City Tourism Geographic Information System is based on collecting secondary data on tourism information at the Samarinda City Tourism Office and also collecting primary data by interviewing tourist objects that have not been recorded at the Samarinda City Tourism Office. The system and appearance of the Samarinda City Tourism Geographic Information System website was built with the CodeIgniter 3 framework using Visual Studio Code as a text editor. The results of this study are the Samarinda City Tourism Geographic Information System which provides information on tourist names, addresses, types of tours, location coordinates, descriptions, images and is equipped with search features and also road routes to tourist sites. It is hoped that the Samarinda City Tourism Geographic Information System can provide adequate information about tourism information in the city of Samarinda so as to facilitate the delivery and acceptance to the public, especially prospective tourists.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

O’Neill, Wende A. y Elizabeth Harper. "Location Translation Within a Geographic Information System". Transportation Research Record: Journal of the Transportation Research Board 1593, n.º 1 (enero de 1997): 55–63. http://dx.doi.org/10.3141/1593-08.

Texto completo
Resumen
Location translation allows the use of multiple spatial referencing methods within a geographic information system (GIS). Most GIS users are familiar with planar or spherical coordinates expressed as (x, y) pairs of numbers whose values reflect the map projection used. Coordinates are characterized as unique physical locations on the earth’s surface. Transportation professionals have added many methods of referencing data that occur along lines. Linear referencing systems generally reflect a measure of distance from a known point. Common linear referencing methods are route–milepoint and route–reference post–offset. Street (postal) address systems also fall into the category of linear references. Linear referencing methods do not uniquely define locations on the earth’s surface without additional information about the location of the line (or road) on the earth’s surface. Although many of the off-the-shelf GIS systems allow conversion among a wide variety of planar or spherical referencing systems, few accommodate linear referencing systems, and none are capable of translating among linear referencing systems or between planar or spherical and linear systems. Some of the issues that arise in the development of location translation systems are discussed. A description of the data model and database requirements of the system designed for the Utah Department of Transportation is included. This location translation system was developed to facilitate crash reporting in urban areas, although there are numerous applications within transportation agencies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Zhang, Yan, Larry Hoover y Jihong (Solomon) Zhao. "Geographic Information System Effects on Policing Efficacy". International Journal of Applied Geospatial Research 5, n.º 2 (abril de 2014): 30–43. http://dx.doi.org/10.4018/ijagr.2014040103.

Texto completo
Resumen
GIS technology is credited with substantially improving police crime analysis and related resource allocation. Although GIS has been said to be an efficient and effective technology in policing, limited empirical assessment has been conducted. An examination of functions and a review of the literature suggests four major applications of GIS in policing: computerized crime mapping/crime analysis; “hot spots” identification; improving command-level decision making; and geographical investigative analysis (primarily offender profiling). The primary objective of this qualitative review is to identify the extent of empirical evaluations of the effectiveness of a GIS. Although there is some research reference offender profiling, results are mixed. Only two empirical evaluations have been published that examine crime mapping, and both are limited to effects on perceptions. No empirical work links GIS to police deployment effectiveness.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kursah, Matthew Biniyam. "Least-Cost Pipeline using Geographic Information System". International Journal of Applied Geospatial Research 8, n.º 3 (julio de 2017): 1–15. http://dx.doi.org/10.4018/ijagr.2017070101.

Texto completo
Resumen
Increasing demand for water in Wapuli and its environ led to a proposal to construct a pipeline to link the town to an existing water plant. This paper developed a geospatial model incorporating multi-criteria analysis involving technical factors such as slope, landcover, watercourses, distance to roads and soil types to determine a least-cost path for the pipeline. However, the first least-cost path passes through a tiny sacred grove near Moadani dam, necessitating the generation of a second least-cost path by considering sacred groves as constraint. The result showed that the least-cost path avoided steep slopes, and runs through relatively levelled grounds. This analysis showed the importance of cultural factors in route planning. It is recommended that in route planning attention be given to cultural factors much in the same way as the technical factors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kimuro, Yoshihiko, Ryou Araya, Daisaku Arita, Takafumi Ienaga, Kouji Murakami y Zhimei Yang. "R-GIS: Robotic and Geographic Information System". Journal of the Robotics Society of Japan 27, n.º 8 (2009): 868–76. http://dx.doi.org/10.7210/jrsj.27.868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kao, Jehng-Jung, Hung-Yue Lin y Wei-Yea Chen. "Network Geographic Information System for Landfill Siting". Waste Management & Research 15, n.º 3 (junio de 1997): 239–53. http://dx.doi.org/10.1177/0734242x9701500303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

MORI, Nobuhiko, Shunji MURAI y Itoshi KOHNO. "Geographic Information Extraction with a PC-System." Journal of the Japan society of photogrammetry and remote sensing 32, n.º 6 (1993): 67–70. http://dx.doi.org/10.4287/jsprs.32.6_67.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía