Siga este enlace para ver otros tipos de publicaciones sobre el tema: Geochemistry.

Artículos de revistas sobre el tema "Geochemistry"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Geochemistry".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Price, Jonathan G. "SEG Presidential Address: I Never Met a Rhyolite I Didn’t Like – Some of the Geology in Economic Geology". SEG Discovery, n.º 57 (1 de abril de 2004): 1–13. http://dx.doi.org/10.5382/segnews.2004-57.fea.

Texto completo
Resumen
ABSTRACT Rhyolites and their deep-seated chemical equivalents, granites, are some of the most interesting rocks. They provide good examples of why it is important to look carefully at fresh rocks in terms of fıeld relationships, mineralogy, petrography, petrology, geochemistry, and alteration processes. Because of their evolved geochemisty, they commonly are important in terms of ore-forming processes. They are almost certainly the source of metal in many beryllium and lithium deposits and the source of heat for many other hydrothermal systems. From other perspectives, rhyolitic volcanic eruptions have the capacity of destroying civilizations, and their geochemistry (e.g., high contents of radioactive elements) is relevant to public policy decision-making.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

DEMETRIADES, A. "Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys". Bulletin of the Geological Society of Greece 34, n.º 3 (1 de enero de 2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Texto completo
Resumen
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

VAN SCHMUS, W. R. "Crustal Geochemistry: Archaean Geochemistry." Science 231, n.º 4739 (14 de febrero de 1986): 751–52. http://dx.doi.org/10.1126/science.231.4739.751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hunt, John M. "Geochemistry". Geochimica et Cosmochimica Acta 53, n.º 12 (diciembre de 1989): 3343. http://dx.doi.org/10.1016/0016-7037(89)90115-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Volkman, John K. "Future Outlook for Applications of Biomarkers and Isotopes in Organic Geochemistry". Elements 18, n.º 2 (1 de abril de 2022): 115–20. http://dx.doi.org/10.2138/gselements.18.2.115.

Texto completo
Resumen
Organic geochemistry continues to make important contributions to our understanding of how the biogeochemistry of our planet and its environment has changed over time and of the role of human impacts today. This article provides a brief overview of the field and a perspective on how it might develop in the near future. Particular emphasis is placed on biomarkers (compounds with a distinctive chemical structure that can be related to specific organisms) and stable isotopes of carbon, hydrogen, and nitrogen, as these are major tools used by organic geochemists. Many geochemical studies involve a mixture of disciplines and so this article also focuses on how this research area can complement work in other fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Canfield, Donald E. "Marine Geochemistry". Limnology and Oceanography 45, n.º 7 (noviembre de 2000): 1680. http://dx.doi.org/10.4319/lo.2000.45.7.1680.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hanson, B. "GEOCHEMISTRY: Selenospheres". Science 303, n.º 5656 (16 de enero de 2004): 289b—289. http://dx.doi.org/10.1126/science.303.5656.289b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Till, Christy. "Big geochemistry". Nature 523, n.º 7560 (julio de 2015): 293–94. http://dx.doi.org/10.1038/523293a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

WILSON, ELIZABETH K. "MODELING GEOCHEMISTRY". Chemical & Engineering News 88, n.º 14 (5 de abril de 2010): 39–40. http://dx.doi.org/10.1021/cen-v088n014.p039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Elderfield, H. "Marine Geochemistry". Marine and Petroleum Geology 17, n.º 9 (noviembre de 2000): 1083–84. http://dx.doi.org/10.1016/s0264-8172(00)00036-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fuge, Ron. "Environmental Geochemistry". Applied Geochemistry 17, n.º 8 (agosto de 2002): 959. http://dx.doi.org/10.1016/s0883-2927(02)00094-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Wakefield, S. J. "Applied geochemistry". Continental Shelf Research 8, n.º 1 (enero de 1988): 111. http://dx.doi.org/10.1016/0278-4343(88)90028-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Parker, Andrew y A. Mark Pollard. "Archaeological geochemistry". Applied Geochemistry 21, n.º 10 (octubre de 2006): 1625. http://dx.doi.org/10.1016/j.apgeochem.2006.07.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Wangersky, Peter J. "Marine geochemistry". Chemical Geology 90, n.º 1-2 (marzo de 1991): 170–71. http://dx.doi.org/10.1016/0009-2541(91)90043-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Rothwell, R. G. "Marine geochemistry". Marine and Petroleum Geology 8, n.º 3 (agosto de 1991): 374. http://dx.doi.org/10.1016/0264-8172(91)90096-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gardner, Christopher B., David T. Long y W. Berry Lyons. "Urban Geochemistry". Applied Geochemistry 83 (agosto de 2017): 1–2. http://dx.doi.org/10.1016/j.apgeochem.2017.05.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

WINDLEY, B. "Archaean Geochemistry". Earth-Science Reviews 24, n.º 1 (marzo de 1987): 67. http://dx.doi.org/10.1016/0012-8252(87)90051-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Hosking, K. F. G. "Applied geochemistry". Journal of Southeast Asian Earth Sciences 1, n.º 2 (enero de 1986): 143–44. http://dx.doi.org/10.1016/0743-9547(86)90027-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Hirner, A. V. y P. Hahn-Weinheimer. "Organometallic Geochemistry". Chemical Geology 70, n.º 1-2 (agosto de 1988): 116. http://dx.doi.org/10.1016/0009-2541(88)90529-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Hawkes, Herbert E. "Applied geochemistry". Geochimica et Cosmochimica Acta 50, n.º 11 (noviembre de 1986): 2528. http://dx.doi.org/10.1016/0016-7037(86)90039-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Chaffee, Maurice A. "Drainage geochemistry". Journal of Geochemical Exploration 54, n.º 2 (octubre de 1995): 149–51. http://dx.doi.org/10.1016/0375-6742(95)90006-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

SELINUS, O. "Handbook of exploration geochemistry, volume 6 drainage geochemistry". Applied Geochemistry 11, n.º 3 (mayo de 1996): 489–90. http://dx.doi.org/10.1016/s0883-2927(96)81806-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Gong, Qingjie y Zeming Shi. "Special Issue on New Advances and Illustrations in Applied Geochemistry in China". Applied Sciences 13, n.º 14 (15 de julio de 2023): 8220. http://dx.doi.org/10.3390/app13148220.

Texto completo
Resumen
The 9th national conference on applied geochemistry in China will be held in Chengdu, Sichuan province, in October 2023, hosted by the committee of applied geochemistry, the Chinese Society for Mineralogy, Petrology and Geochemistry (CSMPG) [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Britt, Allison F., Raymond E. Smith y David J. Gray. "Element mobilities and the Australian regolith - a mineral exploration perspective". Marine and Freshwater Research 52, n.º 1 (2001): 25. http://dx.doi.org/10.1071/mf00054.

Texto completo
Resumen
Much of the Australian regolith ranges from Palaeogene to Late Cretaceous in age or even older, contrasting with the relatively young landscapes of the Northern Hemisphere. Hence, many imported geochemical exploration methods are unsuitable for Australian environments; this has led to successful homegrown innovation. Exploration geochemistry seeks to track geochemical anomalies arising from concealed ore deposits to their source. Much is known about element associations for different types of ore deposits and about observed patterns of dispersion. Element mobility in a range of Western Australian environments is discussed, drawing on field examples from the Mt Percy and Boddington gold mines and the Yandal greenstone belt, with reference to the effect of modern and past weathering regimes and the influence of groundwater on element mobility. Soil biota and vegetation affect Au mobility in the regolith, but specific processes, scale and environmental factors are unknown. Possible future synergies between biogeochemical or environmental research and regolith exploration geochemistry include determining the fundamental biogeochemical processes involved in the formation of geochemical anomalies as well as environmental concerns such as regolith aspects of land degradation. Exploration geochemists must study the work of biogeochemical and environmental researchers, and vice versa. There should also be collaborative research with regolith scientists and industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bispo-Silva, Sizenando, Cleverson J. Ferreira de Oliveira y Gabriel de Alemar Barberes. "Geochemical Biodegraded Oil Classification Using a Machine Learning Approach". Geosciences 13, n.º 11 (24 de octubre de 2023): 321. http://dx.doi.org/10.3390/geosciences13110321.

Texto completo
Resumen
Chromatographic oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of Convolutional Neural Networks (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one chromatographic oil images from different worldwide basins (Brazil, the USA, Portugal, Angola, and Venezuela) were used. The open-source software Orange Data Mining was used to process images by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through convolutional operations. Subsequently, the recurring features are grouped into common feature groups. The training result obtained an accuracy (CA) of 96.7% and an area under the ROC (Receiver Operating Characteristic) curve (AUC) of 99.7%. In turn, the test result obtained a 97.6% CA and a 99.7% AUC. This work suggests that the processing of petroleum chromatographic images through CNN can become a new tool for the study of petroleum geochemistry since the chromatograms can be loaded, read, grouped, and classified more efficiently and quickly than the evaluations applied in classical methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Shi, Long Qing, Dao Kun Ni y Jian Guang Cheng. "The Study on Establishing the Baseline Mode of Coal Mine Area Soil Heavy Metal Pollution". Applied Mechanics and Materials 229-231 (noviembre de 2012): 2712–15. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2712.

Texto completo
Resumen
The earth's crust Cluck value, the shale abundance value, the sandstone abundance value and so on may become in the weight earth's crust in the different land sector and the rock type the element centralism dispersible standard, becomes the more general geochemistry reference baseline, but uses the above baseline the shortcoming not to consider the natural geochemistry change. When specific area, under the specific geological background conducts the environment geochemistry research, uses the above geochemistry reference baseline the limitation to be more obvious. On the contrary, the environment geochemistry baseline represents in the humanity moves disturbs the local some place prompt survey the element density, is in the research or in monitor plan some specific time some medium the element density, usually is not in the true sense background. Therefore uses the science reasonable method determination soil environment geochemistry baseline, by determined the chemical element nature distribution the spatial variation, is understood the surface environmental pollution and the worsened degree, forecast and monitors the whole world environmental variation the foundation. Therefore, carries out the geochemistry baseline research is an extremely urgent duty. This article will use the statistical method to establish in the Yanzhou mining area surface layer soil heavy metal element As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn environment geochemistry baseline.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Italiano, Francesco, Andrzej Solecki, Giovanni Martinelli, Yunpeng Wang y Guodong Zheng. "New Applications in Gas Geochemistry". Geofluids 2020 (2 de julio de 2020): 1–3. http://dx.doi.org/10.1155/2020/4976190.

Texto completo
Resumen
Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Vorontsov, A. A., M. I. Kuzmin, A. B. Perepelov y V. S. Shatsky. "Modern Lines in Geochemistry: Anniversary Conference". Russian Geology and Geophysics 65, n.º 3 (1 de marzo de 2024): 299–301. http://dx.doi.org/10.2113/rgg20234695.

Texto completo
Resumen
Abstract —On 21–25 November, 2022, Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences (Irkutsk), organized and held an All-Russian conference celebrating the 65th anniversary since the foundation of the Institute and the 105th anniversary since the birth of its first director, Academician Lev Vladimirovich Tauson, who headed the Institute from 1961 to 1989. The results reported at the conference encompass a wide range of research fields in modern geochemistry, including isotope geochemistry of igneous, metamorphic, and sedimentary rocks in various geodynamic settings; chemistry of ore-magmatic systems and modern methods of mineral exploration; environmental geochemistry, geoecology, and paleoclimate; laboratory modeling and thermodynamic calculations of natural and production-related processes and materials; advanced analytical methods and information technologies for geosciences. The conference presentations pay tribute to Lev Tauson whose academic carrier, as well as all creative activity, had been closely related with the development of the Institute of Geochemistry. The preface paper provides a review of topics discussed at the conference concerning various geodynamic and geochemical problems, including sources of material, petrogenesis, and metallogeny.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Fehrenbacher, Jennifer S., Brittany N. Hupp, Oscar Branson, David Evans, Gavin L. Foster, Nicolaas Glock, Kaustubh Thirumalai y Jody Wycech. "INDIVIDUAL FORAMINIFERAL ANALYSES: A REVIEW OF CURRENT AND EMERGING GEOCHEMICAL TECHNIQUES". Journal of Foraminiferal Research 54, n.º 4 (1 de octubre de 2024): 312–31. http://dx.doi.org/10.61551/gsjfr.54.4.312.

Texto completo
Resumen
Abstract The trace element (TE) and isotopic composition of calcareous foraminifera has been invaluable in advancing our understanding of environmental change throughout the geological record. Whereas “bulk” geochemical techniques, typically requiring the dissolution of tens to hundreds of foraminiferal tests for a single analysis, have been used for decades to reconstruct past ocean-climate conditions, recent technological advances have increased our ability to investigate foraminiferal geochemistry from an individual test to a micron-scale domain level. Here we review current and emerging techniques and approaches to studying the trace element and stable isotope geochemistry of individual foraminifera (i.e., individual foraminiferal analyses or “IFA”), covering spatial scales including whole-test analysis, intratest spot analysis, and cross-sectional chemical mapping techniques. Our discussion of each technique provides an overview of how the specific analytical tool works, the history of its usage in foraminiferal studies, its applications, considerations, and limitations, and potential directions for future study. Lastly, we describe potential applications of combining multiple IFA techniques to resolve key questions related to paleoceanography, (paleo)ecology, and biomineralization, and provide recommendations for the storage, dissemination, and transparency of the vast amounts of data produced through these methods. This review serves as a resource for budding and experienced foraminiferal geochemists to explore the wide array of cutting-edge approaches being used to study the geochemical composition of modern and fossil foraminifera.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Martin, M. H. y I. Thornton. "Applied Environmental Geochemistry." Journal of Applied Ecology 22, n.º 3 (diciembre de 1985): 1028. http://dx.doi.org/10.2307/2403267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kalsbeek, F. "Geochemistry in GGU". Rapport Grønlands Geologiske Undersøgelse 148 (1 de enero de 1990): 43–45. http://dx.doi.org/10.34194/rapggu.v148.8118.

Texto completo
Resumen
Chemical analyses are essential for many of GGU's activities, especially in the search and evaluation of mineral resources and in the study of rock units. GGU has a well-equipped laboratory for the analysis of rock material, and has a close cooperation with laboratories belonging to the Department of Geology of the University of Copenhagen and the Risø National Laboratory, Denmark.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Shimizu, Hiroshi. "Processes in Geochemistry". TRENDS IN THE SCIENCES 10, n.º 1 (2005): 96–97. http://dx.doi.org/10.5363/tits.10.96.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Qin, Liping y Xiangli Wang. "Chromium Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 379–414. http://dx.doi.org/10.2138/rmg.2017.82.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Rouxel, Olivier J. y Béatrice Luais. "Germanium Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 601–56. http://dx.doi.org/10.2138/rmg.2017.82.14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Penniston-Dorland, Sarah, Xiao-Ming Liu y Roberta L. Rudnick. "Lithium Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 165–217. http://dx.doi.org/10.2138/rmg.2017.82.6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Teng, Fang-Zhen. "Magnesium Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 219–87. http://dx.doi.org/10.2138/rmg.2017.82.7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Poitrasson, Franck. "Silicon Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 289–344. http://dx.doi.org/10.2138/rmg.2017.82.8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Barnes, Jaime D. y Zachary D. Sharp. "Chlorine Isotope Geochemistry". Reviews in Mineralogy and Geochemistry 82, n.º 1 (2017): 345–78. http://dx.doi.org/10.2138/rmg.2017.82.9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Savenko, V. S. "Ecology in geochemistry". Moscow University Geology Bulletin 66, n.º 3 (junio de 2011): 163–70. http://dx.doi.org/10.3103/s0145875211030100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Smith, H. J. "GEOCHEMISTRY: Cultured Carbonate". Science 290, n.º 5500 (22 de diciembre de 2000): 2215c—2215. http://dx.doi.org/10.1126/science.290.5500.2215c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Rowan, L. "GEOCHEMISTRY: Bacterial Spelunkers". Science 304, n.º 5672 (7 de mayo de 2004): 799a. http://dx.doi.org/10.1126/science.304.5672.799a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Yeston, J. "GEOCHEMISTRY: Postdiluvian Pb". Science 314, n.º 5803 (24 de noviembre de 2006): 1218d—1219d. http://dx.doi.org/10.1126/science.314.5803.1218d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

O'Day, Peggy A. "Molecular environmental geochemistry". Reviews of Geophysics 37, n.º 2 (mayo de 1999): 249–74. http://dx.doi.org/10.1029/1998rg900003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Hanson, B. "GEOCHEMISTRY: Shifting Grasses". Science 310, n.º 5752 (25 de noviembre de 2005): 1247d. http://dx.doi.org/10.1126/science.310.5752.1247d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Anonymous. "Trace element geochemistry". Eos, Transactions American Geophysical Union 66, n.º 13 (1985): 137. http://dx.doi.org/10.1029/eo066i013p00137-05.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hanson, B. "GEOCHEMISTRY: Team Effort". Science 320, n.º 5881 (6 de junio de 2008): 1263a. http://dx.doi.org/10.1126/science.320.5881.1263a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Hostettler, John D. "Geochemistry for chemists". Journal of Chemical Education 62, n.º 10 (octubre de 1985): 823. http://dx.doi.org/10.1021/ed062p823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

ELLIOTT, HERSCHEL A. "Applied Environmental Geochemistry". Soil Science 140, n.º 4 (octubre de 1985): 307. http://dx.doi.org/10.1097/00010694-198510000-00015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hanson, B. "GEOCHEMISTRY: Elemental Traces". Science 307, n.º 5713 (25 de febrero de 2005): 1171d. http://dx.doi.org/10.1126/science.307.5713.1171d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Smith, H. J. "GEOCHEMISTRY: Dating Service". Science 307, n.º 5717 (25 de marzo de 2005): 1841b. http://dx.doi.org/10.1126/science.307.5717.1841b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía