Literatura académica sobre el tema "Genomic trait"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Genomic trait".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Genomic trait"
Bohlouli, Mehdi, Sadegh Alijani, Ardashir Nejati Javaremi, Sven König y Tong Yin. "Genomic prediction by considering genotype × environment interaction using different genomic architectures". Annals of Animal Science 17, n.º 3 (26 de julio de 2017): 683–701. http://dx.doi.org/10.1515/aoas-2016-0086.
Texto completoLozada, Dennis y Arron Carter. "Insights into the Genetic Architecture of Phenotypic Stability Traits in Winter Wheat". Agronomy 10, n.º 3 (7 de marzo de 2020): 368. http://dx.doi.org/10.3390/agronomy10030368.
Texto completoCalus, M. P. L., D. P. Berry, G. Banos, Y. de Haas y R. F. Veerkamp. "Genomic selection: the option for new robustness traits?" Advances in Animal Biosciences 4, n.º 3 (julio de 2013): 618–25. http://dx.doi.org/10.1017/s2040470013000186.
Texto completoSunagar, Ramesh y Manoj Kumar Pandey. "Genomic Approaches for Enhancing Yield and Quality Traits in Mustard (Brassica spp.): A Review of Breeding Strategies". Journal of Advances in Biology & Biotechnology 27, n.º 6 (8 de mayo de 2024): 174–85. http://dx.doi.org/10.9734/jabb/2024/v27i6877.
Texto completoSrivastava, Swati, Bryan Irvine Lopez, Sara de las Heras-Saldana, Jong-Eun Park, Dong-Hyun Shin, Han-Ha Chai, Woncheol Park, Seung-Hwan Lee y Dajeong Lim. "Estimation of Genetic Parameters by Single-Trait and Multi-Trait Models for Carcass Traits in Hanwoo Cattle". Animals 9, n.º 12 (2 de diciembre de 2019): 1061. http://dx.doi.org/10.3390/ani9121061.
Texto completoHuang, Mao, Antonio Cabrera, Amber Hoffstetter, Carl Griffey, David Van Sanford, José Costa, Anne McKendry, Shiaoman Chao y Clay Sneller. "Genomic selection for wheat traits and trait stability". Theoretical and Applied Genetics 129, n.º 9 (4 de junio de 2016): 1697–710. http://dx.doi.org/10.1007/s00122-016-2733-z.
Texto completoEduardo, Iban, Pere Arús, Antonio José Monforte, Javier Obando, Juan Pablo Fernández-Trujillo, Juan Antonio Martínez, Antonio Luís Alarcón, Jose María Álvarez y Esther van der Knaap. "Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines". Journal of the American Society for Horticultural Science 132, n.º 1 (enero de 2007): 80–89. http://dx.doi.org/10.21273/jashs.132.1.80.
Texto completoFragomeni, Breno, Zulma Vitezica, Justine Liu, Yijian Huang, Kent Gray, Daniela Lourenco y Ignacy Misztal. "209 Genomic selection for multiple maternal and growth traits in large white pigs using Single-Step GBLUP". Journal of Animal Science 97, Supplement_3 (diciembre de 2019): 42. http://dx.doi.org/10.1093/jas/skz258.084.
Texto completoShabannejad, Morteza, Mohammad-Reza Bihamta, Eslam Majidi-Hervan, Hadi Alipour y Asa Ebrahimi. "A classic approach for determining genomic prediction accuracy under terminal drought stress and well-watered conditions in wheat landraces and cultivars". PLOS ONE 16, n.º 3 (5 de marzo de 2021): e0247824. http://dx.doi.org/10.1371/journal.pone.0247824.
Texto completoMoeinizade, Saba, Aaron Kusmec, Guiping Hu, Lizhi Wang y Patrick S. Schnable. "Multi-trait Genomic Selection Methods for Crop Improvement". Genetics 215, n.º 4 (1 de junio de 2020): 931–45. http://dx.doi.org/10.1534/genetics.120.303305.
Texto completoTesis sobre el tema "Genomic trait"
Kindt, Alida Sophie Dorothea. "Genomic signature of trait-associated variants". Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9620.
Texto completoHu, Wei. "Genomic determinants of alcohol effects /". Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008. http://proquest.umi.com/pqdweb?did=1545571871&sid=1&Fmt=6&clientId=18952&RQT=309&VName=PQD.
Texto completoTypescript. Includes bibliographical references (leaves 121-149). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
Huang, Mao. "Accuracy of genomic selection in a soft winter wheat (Triticum aestivum L.) breeding program". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468841458.
Texto completoWard, Brian Phillip. "Genomic Prediction and Genetic Dissection of Yield-Related Traits in Soft Red Winter Wheat". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85503.
Texto completoPh. D.
Masekoameng, Tshepiso. "Sickle cell trait and targeted genomic variants in chronic kidney disease an African cohort". Master's thesis, Faculty of Health Sciences, 2019. http://hdl.handle.net/11427/31357.
Texto completoPecoraro, Carlo <1986>. "Global Population Genomic Structure and Life History Trait Analysis of Yellowfin Tuna (Thunnus Albacares)". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7537/1/Pecoraro_Carlo_tesi.pdf.
Texto completoPecoraro, Carlo <1986>. "Global Population Genomic Structure and Life History Trait Analysis of Yellowfin Tuna (Thunnus Albacares)". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7537/.
Texto completoLin, Meng. "Genetic and genomic studies on wheat pre-harvest sprouting resistance". Diss., Kansas State University, 2016. http://hdl.handle.net/2097/34597.
Texto completoDepartment of Agronomy
Guihua Bai
Allan K. Fritz
Wheat pre-harvest sprouting (PHS), germination of physiologically matured grains in a wheat spike before harvesting, can cause significant reduction in grain yield and end-use quality. Many quantitative trait loci (QTL) for PHS resistance have been reported in different sources. To determine the genetic architecture of PHS resistance and its relationship with grain color (GC) in US hard winter wheat, a genome-wide association study (GWAS) on both PHS resistance and GC was conducted using in a panel of 185 U.S. elite breeding lines and cultivars and 90K wheat SNP arrrays. PHS resistance was assessed by evaluating sprouting rates in wheat spikes harvested from both greenhouse and field experiments. Thirteen QTLs for PHS resistance were identified on 11 chromosomes in at least two experiments, and the effects of these QTLs varied among different environments. The common QTLs for PHS resistance and GC were identified on the long arms of the chromosome 3A and 3D, indicating pleiotropic effect of the two QTLs. Significant QTLs were also detected on chromosome arms 3AS and 4AL, which were not related to GC, suggesting that it is possible to improve PHS resistance in white wheat. To identify markers closely linked to the 4AL QTL, genotyping-by-sequencing (GBS) technology was used to analyze a population of recombinant inbred lines (RILs) developed from a cross between two parents, “Tutoumai A” and “Siyang 936”, contrasting in 4AL QTL. Several closely linked GBS SNP markers to the 4AL QTL were identified and some of them were coverted to KASP for marker-assisted breeding. To investigate effects of the two non-GC related QTLs on 3AS and 4AL, both QTLs were transferered from “Tutoumai A” and “AUS1408” into a susceptible US hard winter wheat breeding line, NW97S186, through marker-assisted backcrossing using the gene marker TaPHS1 for 3AS QTL and a tightly linked KASP marker we developed for 4AL QTL. The 3AS QTL (TaPHS1) significantly interacted with environments and genetic backgrounds, whereas 4AL QTL (TaMKK3-A) interacted with environments only. The two QTLs showed additive effects on PHS resistance, indicating pyramiding these two QTLs can increase PHS resistance. To improve breeding selection efficiency, genomic prediction using genome-wide markers and marker-based prediction (MBP) using selected trait-linked markers were conducted in the association panel. Among the four genomic prediction methods evaluated, the ridge regression best linear unbiased prediction (rrBLUP) provides the best prediction among the tested methods (rrBLUP, BayesB, BayesC and BayesC0). However, MBP using 11 significant SNPs identified in the association study provides a better prediction than genomic prediction. Therefore, for traits that are controlled by a few major QTLs, MBP may be more effective than genomic selection.
He, Feng y 贺峰. "Detection of parent-of-origin effects and association in relation to aquantitative trait". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44921408.
Texto completoToubiana, William. "Towards an adaptive and genomic understanding of an exaggerated secondary sexual trait in water striders". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN058/document.
Texto completoFrom the DNA molecule to the more complex phenotypes, variation is a universal process in life and living organisms. The innumerable differences that exist between species are probably one of the most manifest examples. Yet, all this diversity would never have occurred in nature without some pre-existing divergence within species. One of the most striking examples of intraspecies variation appears in sexual organisms, between males and females. Understanding the environmental and genetic factors influencing sexual divergence is a longstanding question in evolutionary biology. To this end, I focus here on a new insect model system, Microvelia longipes, which has the particularity to have evolved an extreme case of sexual dimorphism in the rear legs. Males display exaggerated long rear legs compared to females but also an extreme variability in these leg lengths from one male to another. We identified that M. longipes males use their exaggerated legs as weapons during male-male competition. Males with longer legs have more chance to access females on egg-laying sites and therefore increase their reproductive success. Moreover, fitness assays and comparative studies between Microvelia species revealed that the intensity of male competition was associated with the exaggeration and hypervariability of the rear legs in M. longipes males. In a second approach, we studied the developmental and genomic basis of this sexual dimorphism through a comparative transcriptomic analysis and identified genes and genomic regions associated with male exaggerated legs and ultimately with sexual selection. Overall, the integrative approach used in this work allows to establish Microvelia longipes as a promising new model system to study the influence of sexual selection in adaptive evolution
Libros sobre el tema "Genomic trait"
Fontanesi, Luca, ed. The genetics and genomics of the rabbit. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781780643342.0000.
Texto completoLantbruksuniversitet, Sveriges, ed. Genome analysis of quantitative trait loci in the pig. Uppsala: Sveriges Lantbruksuniversitet, 1997.
Buscar texto completoGloyn, Anna L. y Mark I. McCarthy. Genetics in diabetes: Type 2 diabetes and related traits. Basel: Karger, 2014.
Buscar texto completo1955-, Saxton Arnold Myron y SAS Institute, eds. Genetic analysis of complex traits using SAS. Cary, N.C: SAS Institute, 2004.
Buscar texto completoNōrin Suisan Gijutsu Kaigi. Jimukyoku., ed. Yūyō idenshi katsuyō no tame no shokubutsu (ine) dōbutsu genomu kenkyū, ine genomu no jūyō keishitsu kanren idenshi no kinō kaimei =: Functional analysis of genes relevant to agriculturally important traits in rice genome. Tōkyō: Nōrin Suisan Gijutsu Kaigi Jimukyoku, 2009.
Buscar texto completoMaroni, Gustavo. Molecular and Genetic Analysis of Human Traits. New York: John Wiley & Sons, Ltd., 2007.
Buscar texto completoNōrin Suisan Gijutsu Kaigi. Jimukyoku., ed. Genomu ikushu ni yoru kōritsuteki hinshu ikusei gijutsu no kaihatsu, QTL idenshi kaiseki no suishin =: Genetic and molecular dissection of quantitative traits in rice. Tōkyō: Nōrin Suisan Gijutsu Kaigi Jimukyoku, 2009.
Buscar texto completoNōrin Suisan Gijutsu Kaigi. Jimukyoku., ed. Genomu ikushu ni yoru kōritsuteki hinshu ikusei gijutsu no kaihatsu, QTL idenshi kaiseki no suishin =: Genetic and molecular dissection of quantitative traits in rice. Tōkyō: Nōrin Suisan Gijutsu Kaigi Jimukyoku, 2009.
Buscar texto completoSaunak, Sen y SpringerLink (Online service), eds. A Guide to QTL Mapping with R/qtl. New York, NY: Springer-Verlag New York, 2009.
Buscar texto completoGenomic Selection in Animals. Wiley-Blackwell, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Genomic trait"
Montesinos López, Osval Antonio, Abelardo Montesinos López y Jose Crossa. "Linear Mixed Models". En Multivariate Statistical Machine Learning Methods for Genomic Prediction, 141–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_5.
Texto completoQiu, Zhixu, Yunjia Tang y Chuang Ma. "An Effective Strategy for Trait Combinations in Multiple-Trait Genomic Selection". En Intelligent Computing Theories and Application, 230–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63312-1_21.
Texto completoCrossa, José, J. Jesús Cerón-Rojas, Johannes W. R. Martini, Giovanny Covarrubias-Pazaran, Gregorio Alvarado, Fernando H. Toledo y Velu Govindan. "Theory and Practice of Phenotypic and Genomic Selection Indices". En Wheat Improvement, 593–616. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_32.
Texto completoMontesinos López, Osval Antonio, Abelardo Montesinos López y Jose Crossa. "Bayesian Genomic Linear Regression". En Multivariate Statistical Machine Learning Methods for Genomic Prediction, 171–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_6.
Texto completoSukumaran, Sivakumar, Greg Rebetzke, Ian Mackay, Alison R. Bentley y Matthew P. Reynolds. "Pre-breeding Strategies". En Wheat Improvement, 451–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_25.
Texto completoMukhopadhyay, CS y Bhawanpreet Kaur. "Applications of Tag-SNPs in Quantitative Trait Loci (QTL) Identification". En Genomic, Proteomics, and Biotechnology, 89–100. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220831-6.
Texto completoShi, Shaolei, Zhe Zhang, Bingjie Li, Shengli Zhang y Lingzhao Fang. "Incorporation of Trait-Specific Genetic Information into Genomic Prediction Models". En Methods in Molecular Biology, 329–40. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2205-6_11.
Texto completoMorota, Gota, Diego Jarquin, Malachy T. Campbell y Hiroyoshi Iwata. "Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data". En Methods in Molecular Biology, 269–96. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2537-8_21.
Texto completoGovindaraj, Mahalingam, Mahesh Pujar, Rakesh Srivastava, S. K. Gupta y Wolfgang H. Pfeiffer. "Genetic Biofortification of Pearl Millet: Trait Priority, Breeding and Genomic Progress". En Pearl Millet in the 21st Century, 221–46. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5890-0_9.
Texto completoCalayugan, Mark Ian C., B. P. Mallikarjuna Swamy, Chau Thanh Nha, Alvin D. Palanog, Partha S. Biswas, Gwen Iris Descalsota-Empleo, Yin Myat Myat Min y Mary Ann Inabangan-Asilo. "Zinc-Biofortified Rice: A Sustainable Food-Based Product for Fighting Zinc Malnutrition". En Rice Improvement, 449–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66530-2_13.
Texto completoActas de conferencias sobre el tema "Genomic trait"
Beyer, Andreas, Silpa Suthram y Trey Ideker. "Uncovering Regulatory Pathways with Expression Quantitative Trait Loci". En 2007 IEEE International Workshop on Genomic Signal Processing and Statistics. IEEE, 2007. http://dx.doi.org/10.1109/gensips.2007.4365837.
Texto completoSchmidtmann, C., D. Segelke, J. Bennewitz, J. Tetens y G. Thaller. "284. Considering chromosomal trait correlations improves accuracy of genomic prediction". En World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_284.
Texto completoMeyer, K. "361. Accounting for trait-specific genomic and residual polygenic covariances in multivariate single-step genomic evaluation". En World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_361.
Texto completoAkanno, E. C., D. M. Thekkoot, C. Zhang, C. Bierman, G. Plastow y R. A. Kemp. "300. Multi-trait genomic estimation of genetic parameters for growth and carcass traits of Duroc pigs". En World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_300.
Texto completoMamani, G. C., B. F. Santana y D. Jarquin. "809. Assessing genomic prediction of economic trait in alpacas: a simulation study". En World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_809.
Texto completoCOMERON, JOSEP M., MARTIN KREITMAN y FRANCISCO M. DE LA VEGA. "ON THE POWER TO DETECT SNP/PHENOTYPE ASSOCIATION IN CANDIDATE QUANTITATIVE TRAIT LOCI GENOMIC REGIONS: A SIMULATION STUDY". En Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776303_0045.
Texto completo"Marker-trait associations for agronomic traits in soybean harvested in Kazakhstan". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-213.
Texto completoVerweij, C. L., R. Quadt, E. Briët y H. Pannekoek. "TWO VON WILLEBRAND FACTOR (vWF) GENE POLYMORPHISMS SEGREGATE WITH VON WILLEBRAND'S DISEASE (vWD) TYPE IIA: ASSIGNMENT OF THE DEFECTIVE GENE LOCUS IN vWD TYPE IIA". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644646.
Texto completo"Marker-trait associations for barley grain quality traits identified in Karaganda and Kostanay regions using GWAS". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-063.
Texto completo"Association mapping of quantitative trait loci for agronomic traits in spring wheat collection tested under two water regimes in Northern Kazakhstan". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-007.
Texto completoInformes sobre el tema "Genomic trait"
Sherman, A., D. N. Kuhn, Y. Cohen, R. Ophir y R. Goenaga. Exploring the polyembryonic seed trait in mango as a basis for a biotechnology platform for fruit tree crops. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2021. http://dx.doi.org/10.32747/2021.8134176.bard.
Texto completoWeller, Joel I., Derek M. Bickhart, Micha Ron, Eyal Seroussi, George Liu y George R. Wiggans. Determination of actual polymorphisms responsible for economic trait variation in dairy cattle. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600017.bard.
Texto completoWeller, Joel I., Ignacy Misztal y Micha Ron. Optimization of methodology for genomic selection of moderate and large dairy cattle populations. United States Department of Agriculture, marzo de 2015. http://dx.doi.org/10.32747/2015.7594404.bard.
Texto completoSeroussi, Eyal y George Liu. Genome-Wide Association Study of Copy Number Variation and QTL for Economic Traits in Holstein Cattle. United States Department of Agriculture, septiembre de 2010. http://dx.doi.org/10.32747/2010.7593397.bard.
Texto completoDechow, Chad Daniel, M. Cohen-Zinder, Morris Soller, Y. Tzfati, A. Shabtay, E. Lipkin, T. Ott y W. Liu. Genotypes and phenotypes of telomere length in Holstein cattle, actors or reporters. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134156.bard.
Texto completoFridman, Eyal, Jianming Yu y Rivka Elbaum. Combining diversity within Sorghum bicolor for genomic and fine mapping of intra-allelic interactions underlying heterosis. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597925.bard.
Texto completoSeroussi, E., L. Ma y G. Liu. Genetic analyses of recombination and PRDM9 alleles and their implications in dairy cattle breeding. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134158.bard.
Texto completoAbbott, Albert G., Doron Holland, Douglas Bielenberg y Gregory Reighard. Structural and Functional Genomic Approaches for Marking and Identifying Genes that Control Chilling Requirement in Apricot and Peach Trees. United States Department of Agriculture, septiembre de 2009. http://dx.doi.org/10.32747/2009.7591742.bard.
Texto completoOzias-Akins, P. y R. Hovav. molecular dissection of the crop maturation trait in peanut. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134157.bard.
Texto completoGrumet, R., J. Burger, Y. Tadmor, A. Gur, C. Barry, A. Schäffer y M. Petreikov. Cucumis fruit surface biology: Genetic analysis of fruit exocarp features in melon (C. melo) and cucumber (C. sativus). Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134155.bard.
Texto completo