Literatura académica sobre el tema "Genetic vectors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Genetic vectors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Genetic vectors"
Gooding, R. H. "Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities." Clinical Microbiology Reviews 9, n.º 3 (julio de 1996): 301–20. http://dx.doi.org/10.1128/cmr.9.3.301.
Texto completoYew, Chee-Hong Takahiro, Narmatha Gurumoorthy, Fazlina Nordin, Gee Jun Tye, Wan Safwani Wan Kamarul Zaman, Jun Jie Tan y Min Hwei Ng. "Integrase deficient lentiviral vector: prospects for safe clinical applications". PeerJ 10 (12 de agosto de 2022): e13704. http://dx.doi.org/10.7717/peerj.13704.
Texto completoVerma, Abhishek y Ankit Awasthi. "Developing non-viral or viral vectors for efficient and targeted delivery of genetic material, such as DNA or RNA, for gene therapy applications". Pharmaspire 15, n.º 04 (2023): 243–56. http://dx.doi.org/10.56933/pharmaspire.2023.15137.
Texto completoPerumalsamy, Nandhini, Rohit Sharma, Muthukumaravel Subramanian y Shriram Ananganallur Nagarajan. "Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India". Pathogens 13, n.º 7 (2 de julio de 2024): 556. http://dx.doi.org/10.3390/pathogens13070556.
Texto completoWeklak, Denice, Daniel Pembaur, Georgia Koukou, Franziska Jönsson, Claudia Hagedorn y Florian Kreppel. "Genetic and Chemical Capsid Modifications of Adenovirus Vectors to Modulate Vector–Host Interactions". Viruses 13, n.º 7 (2 de julio de 2021): 1300. http://dx.doi.org/10.3390/v13071300.
Texto completoPowell, Jeffrey. "Genetic Variation in Insect Vectors: Death of Typology?" Insects 9, n.º 4 (11 de octubre de 2018): 139. http://dx.doi.org/10.3390/insects9040139.
Texto completoKienesberger, Sabine, Gregor Gorkiewicz, Martina M. Joainig, Sylvia R. Scheicher, Eva Leitner y Ellen L. Zechner. "Development of Experimental Genetic Tools for Campylobacter fetus". Applied and Environmental Microbiology 73, n.º 14 (18 de mayo de 2007): 4619–30. http://dx.doi.org/10.1128/aem.02407-06.
Texto completoCriscione, Frank, David A. O’Brochta y William Reid. "Genetic technologies for disease vectors". Current Opinion in Insect Science 10 (agosto de 2015): 90–97. http://dx.doi.org/10.1016/j.cois.2015.04.012.
Texto completoKrasnykh, Victor N., Joanne T. Douglas y Victor W. van Beusechem. "Genetic Targeting of Adenoviral Vectors". Molecular Therapy 1, n.º 5 (mayo de 2000): 391–405. http://dx.doi.org/10.1006/mthe.2000.0062.
Texto completoKojic, Milorad y William K. Holloman. "Shuttle vectors for genetic manipulations in Ustilago maydis". Canadian Journal of Microbiology 46, n.º 4 (1 de abril de 2000): 333–38. http://dx.doi.org/10.1139/w00-002.
Texto completoTesis sobre el tema "Genetic vectors"
Theodorides, Kosmas. "Genetic and systematic studies on Cicadellidae vectors". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368187.
Texto completoShareck, Julie. "Isolation and characterization of a cryptic plasmid from Lactobacillus plantarum". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84072.
Texto completoRobson, Julia. "The construction of an expression vector for the transformation of the grape chloroplast genome". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Texto completoENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Ghosh, Arkasubhra. "Rational design of split gene vectors to expand the packaging capacity of adeno-associated viral vectors". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4712.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2007" Includes bibliographical references.
Wood, David Rowe Ding Jiahuan. "Design, optimization, and evaluation of conditionally active gene therapy vectors". Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5153.
Texto completoMück-Häusl, Martin Andreas. "Genetic engineering of adenoviral vectors for improved therapeutic applications". Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138269.
Texto completoWong, Tik-wun Lina. "Construction of an infectious PRRSV cDNA clone and its use as a vector for foreign gene expression". Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B44251841.
Texto completoVan, Eeden C. (Christiaan). "The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Texto completoENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
Warren, Ann. "Transposable genetic elements in the mosquito Aedes aegypti". Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237672.
Texto completoLimberis, Maria. "A lentiviral gene transfer vector for the treatment of cystic fibrosis airway disease". Title page, synopsis and list of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl735.pdf.
Texto completoLibros sobre el tema "Genetic vectors"
L, Hefferon Kathleen, ed. Virus expression vectors. Tribandrum: Transworld Research Network, 2007.
Buscar texto completoS, Ruiz Pablo, ed. Genetic vectors research focus. New York: Nova Biomedical Books, 2007.
Buscar texto completoDavid, Curiel y Douglas Joanne T, eds. Adenoviral vectors for gene therapy. Amsterdam: Academic Press, 2002.
Buscar texto completoGeorge, Dickson, ed. Molecular and cell biology of human gene therapeutics. London: Chapman & Hall, 1995.
Buscar texto completoYakov, Gluzman, Hughes Stephen H y Cold Spring Harbor Laboratory, eds. Viral vectors. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1988.
Buscar texto completoL, Rodriguez Raymond y Denhardt David T, eds. Vectors: A survey of molecular cloning vectors and their uses. Boston: Butterworths, 1988.
Buscar texto completoD, Richardson Christopher, ed. Baculovirus expression protocols. Totowa, N.J: Humana Press, 1995.
Buscar texto completoH, Miller Jeffrey y Calos Michele P, eds. Gene transfer vectors for mammalian cells. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1987.
Buscar texto completoP, Jones, ed. Vectors: Cloning applications. Chichester: Wiley, 1998.
Buscar texto completoP, Jones, ed. Vectors: Expression systems. Chichester: John Wiley & Sons, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Genetic vectors"
Benabdellah, Karim, Simone Thomas y Hinrich Abken. "Genetic Engineering of Autologous or Allogeneic Immune Effector Cells". En The EBMT/EHA CAR-T Cell Handbook, 7–10. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_2.
Texto completoVos, Jean-Michel H. "Herpesviruses as Genetic Vectors". En Viruses in Human Gene Therapy, 109–40. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0555-2_5.
Texto completoCox, William I., Russell R. Gettig y Enzo Paoletti. "Poxviruses as Genetic Vectors". En Viruses in Human Gene Therapy, 141–78. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0555-2_6.
Texto completoBevan, Michael y Andrew Goldsbrough. "Design and Use of Agrobacterium Transformation Vectors". En Genetic Engineering, 123–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7081-3_7.
Texto completoShepherd, Robert J. "Caulimoviruses as Potential Gene Vectors for Higher Plants". En Genetic Engineering, 241–76. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9456-7_13.
Texto completoDingli, David y Stephen J. Russell. "Genetic Targeting of Retroviral Vectors". En Vector Targeting for Therapeutic Gene Delivery, 267–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471234303.ch13.
Texto completoWickham, Thomas J. "Genetic Targeting of Adenoviral Vectors". En Vector Targeting for Therapeutic Gene Delivery, 143–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471234303.ch7.
Texto completoBouyer, Jérémy y Eric Marois. "14. Genetic control of vectors". En Ecology and Control of Vector-borne Diseases, 435–51. The Netherlands: Wageningen Academic Publishers, 2018. http://dx.doi.org/10.3920/978-90-8686-863-6_14.
Texto completoNicklin, Stuart A. y Andrew H. Baker. "Development of Targeted Viral Vectors for Cardiovascular Gene Therapy". En Genetic Engineering, 15–49. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0073-5_2.
Texto completoBernstein, Alan, Stuart Berger, Dennis Huszar y John Dick. "Gene Transfer with Retrovirus Vectors". En Genetic Engineering: Principles and Methods, 235–61. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4973-0_11.
Texto completoActas de conferencias sobre el tema "Genetic vectors"
Alshahrani, Mohammed, Spyridon Samothrakis y Maria Fasli. "Identifying idealised vectors for emotion detection using CMA-ES". En GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3322057.
Texto completoFunaki, Ryohei y Hideyuki Takagi. "Application of Gravity Vectors and Moving Vectors for the Acceleration of Both Differential Evolution and Interactive Differential Evolution". En 2011 Fifth International Conference on Genetic and Evolutionary Computing (ICGEC). IEEE, 2011. http://dx.doi.org/10.1109/icgec.2011.71.
Texto completoMadeira, Catarina, Sofia C. Ribeiro, Rui Mendes, Irina S. M. Pinheiro, Claudia L. da Silva y Joaquim M. S. Cabral. "Genetic engineering of stem cells by non-viral vectors". En 2011 1st Portuguese Meeting in Bioengineering ¿ The Challenge of the XXI Century (ENBENG). IEEE, 2011. http://dx.doi.org/10.1109/enbeng.2011.6026044.
Texto completoPescador-Rojas, Miriam y Carlos A. Coello Coello. "Studying the effect of techniques to generate reference vectors in many-objective optimization". En GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3205684.
Texto completoSato, Yuji, Mads Midtlyng y Mikiko Sato. "Diffusely Distributed Parallelization of MOEA/D with Edge Weight Vectors Sharing". En GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3590738.
Texto completoXianneng Li, S. Mabu, M. K. Mainali y K. Hirasawa. "Probabilistic model building Genetic Network Programming using multiple probability vectors". En 2010 IEEE Region 10 Conference (TENCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/tencon.2010.5686113.
Texto completoFengli Sun, Quanhua Gao y Jinguo Wang. "Ridgelet Probabilistic Neural Network with Genetic Algorithm selecting center vectors". En 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6182206.
Texto completoTanaka, Mariko, Yuki Yamagishi, Hidetoshi Nagai y Hiroyuki Sato. "Infeasible solution repair and MOEA/D sharing weight vectors for solving multi-objective set packing problems". En GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3208765.
Texto completoSánchez, Alberto Rodríguez, Antonin Ponsich y Antonio López Jaimes. "Generation techniques and a novel on-line adaptation strategy for weight vectors within decomposition-based MOEAs". En GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3322055.
Texto completoWu, Kai y George Panoutsos. "High Dimensional Many Objective Optimisation through Diverse Creation and Categorisation of Reference Vectors". En GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3590612.
Texto completoInformes sobre el tema "Genetic vectors"
Dawson, William O. y Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, enero de 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Texto completoLiu, Zhanjiang John, Rex Dunham y Boaz Moav. Developmental and Evaluation of Advanced Expression Vectors with Both Enhanced Integration and Stable Expression for Transgenic Farmed Fish. United States Department of Agriculture, diciembre de 2001. http://dx.doi.org/10.32747/2001.7585196.bard.
Texto completoJung, Carina, Karl Indest, Matthew Carr, Richard Lance, Lyndsay Carrigee y Kayla Clark. Properties and detectability of rogue synthetic biology (SynBio) products in complex matrices. Engineer Research and Development Center (U.S.), septiembre de 2022. http://dx.doi.org/10.21079/11681/45345.
Texto completoPerl, Avichai, Bruce I. Reisch y Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, enero de 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Texto completoUllman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein y Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, septiembre de 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Texto completoSingh, Anjali. What Is Optogenetics and How Does It Work? ConductScience, julio de 2022. http://dx.doi.org/10.55157/cs20220704.
Texto completoMawassi, Munir, Baozhong Meng y Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, julio de 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Texto completoMawassi, Munir y Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, junio de 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Texto completoBar-Joseph, Moshe, William O. Dawson y Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, septiembre de 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Texto completoKnowles, Donald y Monica Leszkowicz Mazuz. Transfected Babesia bovis expressing the anti-tick Bm86 antigen as a vaccine to limit tick infestation and protect against virulent challenge. United States Department of Agriculture, enero de 2014. http://dx.doi.org/10.32747/2014.7598160.bard.
Texto completo