Tesis sobre el tema "Genetic algorithms"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Genetic algorithms".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bland, Ian Michael. "Generic systolic arrays for genetic algorithms". Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312529.
Texto completoAguiar, Marilton Sanchotene de. "Análise formal da complexidade de algoritmos genéticos". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1998. http://hdl.handle.net/10183/25941.
Texto completoThe objective of the work is to study the viability of treating optimization problems, considered intractable, through Genetic Algorithms, developing approaches for the qualitative evaluation of a Genetic Algorithm. Inside this theme, approached areas: complexity, classes of problems, analysis and development of algorithms and Genetic Algorithms, this last one being central object of the study. As product of the study of this theme, a development method of Genetic Algorithms is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The fact that a problem theoretically solvable isn’t enough to mean that it is solvable in pratice. A problem is denominated easy if in the worst case it possesses an algorithm reasonably efficient. And an algorithm is said reasonably efficient when a polynomial p exists such that for any entrance size n the algorithm terminates at maximum of p(n) steps [SZW 84]. Since a polynomial can be of very high order, then an algorithm of polynomial complexity can be very inefficient. The premise of the Genetic Algorithms is that one can find approximate solutions of problems of great computational complexity by means of a process of simulated evolution [LAG 96]. As product of the study of this theme, a method of development of Genetic Algorithms with the quality conscience is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The axiom set has the purpose of giving the semantics of the algorithm, in other words, it defines formally the operation of the algorithm, more specifically of the functions and procedures of the algorithm. And this, facilitates the planner of algorithms a larger safety in the development, because in order to prove the correction of a Genetic Algorithm that satisfies that model it is only necessary to prove that the procedures satisfy the axioms. To have conscience of the quality of an approximate algorithm, two factors are important: the accuracy and the complexity. This work lifts the important points for the study of the complexity of a Genetic Algorithm. Unhappily, they are conflicting factors, because as larger the accuracy, worse (higher) it is the complexity, and vice-versa. Thus, a study of the quality of a Genetic Algorithm, considered an approximate algorithm, would be only complete with the consideration of these two factors. But, this work provides a great step in direction of the study of the viability of the treatment of optimization problems through Genetic Algorithms.
Abu-Bakar, Nordin. "Adaptive genetic algorithms". Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343268.
Texto completoHayes, Christina Savannah Maria. "Generic properties of the infinite population genetic algorithm". Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/hayes/HayesC0806.pdf.
Texto completoWagner, Stefan. "Looking inside genetic algorithms /". Linz : Trauner, 2005. http://aleph.unisg.ch/hsgscan/hm00116856.pdf.
Texto completoCole, Rowena Marie. "Clustering with genetic algorithms". University of Western Australia. Dept. of Computer Science, 1998. http://theses.library.uwa.edu.au/adt-WU2003.0008.
Texto completoLapthorn, Barry Thomas. "Helioseismology and genetic algorithms". Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271261.
Texto completoDelman, Bethany. "Genetic algorithms in cryptography /". Link to online version, 2003. https://ritdml.rit.edu/dspace/handle/1850/263.
Texto completoKrüger, Franz David y Mohamad Nabeel. "Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.
Texto completoAs machine learning (ML) is being more and more frequent in the business world, information gathering through Data mining (DM) is on the rise, and DM-practitioners are generally using several thumb rules to avoid having to spend a decent amount of time to tune the hyperparameters (parameters that control the learning process) of an ML algorithm to gain a high accuracy score. The proposal in this report is to conduct an approach that systematically optimizes the ML algorithms using genetic algorithms (GA) and to evaluate if and how the model should be constructed to find global solutions for a specific data set. By implementing a GA approach on two ML-algorithms, K-nearest neighbors, and Random Forest, on two numerical data sets, Iris data set and Wisconsin breast cancer data set, the model is evaluated by its accuracy scores as well as the computational time which then is compared towards a search method, specifically exhaustive search. The results have shown that it is assumed that GA works well in finding great accuracy scores in a reasonable amount of time. There are some limitations as the parameter’s significance towards an ML algorithm may vary.
Yan, Ping. "Theory of simple genetic algorithms". Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446649.
Texto completoMorrison, Jason. "Co-evolution and genetic algorithms". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0027/MQ26973.pdf.
Texto completoLankhorst, Marc Martijn. "Genetic algorithms in data analysis". [S.l. : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1996. http://irs.ub.rug.nl/ppn/142964662.
Texto completoFang, Xiaopeng. "Engineering design using genetic algorithms". [Ames, Iowa : Iowa State University], 2007.
Buscar texto completoSeabrook, Graham. "Evolving Robofish using Genetic Algorithms /". Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Seabrook.pdf.
Texto completoShen, Gang. "Shadow Price Guided Genetic Algorithms". Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cs_diss/64.
Texto completo何淑瑩 y Shuk-ying Ho. "Knowledge representation with genetic algorithms". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31222638.
Texto completoRoberts, Christopher. "Genetic algorithms for cluster optimization". Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368792.
Texto completoPisitpaibool, Chaisak. "Genetic algorithms for holistic design". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405087.
Texto completoMason, Andrew J. "Genetic algorithms and scheduling problems". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335134.
Texto completoAppelo, Sophia Aletta. "Structural optimisation via genetic algorithms". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71907.
Texto completoENGLISH ABSTRACT: The design of steel structures needs to incorporate some optimisation procedure that evolves the initial design into a more economic nal design, where this nal design must still satisfy all the initial design criteria. A candidate optimisation technique suggested by this research is the genetic algorithm. The genetic algorithm (GA) is an optimisation technique that was inspired by evolutionary principles, such as the survival of the ttest (also known as natural selection). The GA operates by generating a population of individuals which 'compete' with one another in order to survive, or di erently stated, in order to make it into the next generation. Each individual presents a solution to the problem. Surviving solutions which propagate through to the next generation are typically 'better' or ' tter' than the ones that had died o , hence suggesting a process of optimisation. This process continues until a de ned convergence criteria is met (e.g. speci ed maximum number of generations is reached), where after the best individual in the population serves as the ultimate solution to the problem. This study thoroughly investigates the inner workings that drive the algorithm, after which an algorithm is presented to face the challenges of structural optimisation. This algorithm will be concerned only with sizing optimisation; geometry, topology and shape optimisation is outside the scope of this research. The objective of this optimising problem will be to minimise the weight of the structure, it is assumed that the weight is inversely propotional to the cost of the structure. The motive behind using a genetic algorithm in this study is largely due to its ability to handle discrete search spaces; classical search methods are typically limited to some form of gradient search technique for which the search space must be continuous. The algorithm is also preferred due to its ability to e ciently search through vast search spaces, which is typically the case for a structural optimisation problem. The genetic algorithm's performance will be examined through the use of bench-marking problems. Benchmarking is done for both planar and space trusses; the 10 - and 25 bar truss problems. Such problems are typically analysed with stress and displacement constraints. After the performance of the algorithm is validated, the study commences towards solving real life practical problems. The rst step towards solving such problems would be to investigate the 160 bar truss benchmarking problem. This problem will be slightly adapted by applying South African design standards to the design, SANS (2005). This approach is more realistic, when compared to simply specifying stress and displacement constraints due to the fact that an element cannot simply be assigned the same stress constraint for tension and compression; slenderness and buckling e ects need to be taken into account. For this case, the search space will no longer simply be some sample search space, but will consist of real sections taken from the Southern African Steel Construction Handbook, SAISC (2008). Finally, the research will investigate what is needed to optimise a proper real life structure, the Eskom Self-Supporting Suspension 518H Tower. It will address a wide variety of topics, such as modelling the structure as realistically as possible, to investigating key aspects that might make the problem di erent from standard benchmarking problems and what kind of steps can be taken to over-come possible issues and errors. The algorithm runs in parallel with a nite element method program, provided by Dr G.C. van Rooyen, which analyses the solutions obtained from the algorithm and ensures structural feasibility.
AFRIKAANSE OPSOMMING: Die ontwerp van staal strukture moet 'n sekere optimalisasie proses in sluit wat die aanvanklike ontwerp ontwikkel na 'n meer ekonomiese nale ontwerp, terwyl die nuwe ontwerp nog steeds aan al die aanvanklike ontwerp kriteria voldoen. 'n Kandidaat optimeringstegniek wat voorgestel word deur hierdie navorsing is die genetiese algoritme. Die genetiese algoritme (GA) is 'n optimaliserings tegniek wat ge- ïnspireer was deur evolusionêre beginsels soos die oorlewing van die sterkste (ook bekend as natuurlike seleksie). Dit werk deur die skep van 'n bevolking van individue wat 'kompeteer' met mekaar om dit te maak na die volgende generasie. Elke individu bied 'n oplossing vir die probleem. Oorlewende oplossings wat voortplant deur middel van die volgende generasie is tipies 'beter' of ' kser' as die individue wat uitgesterf het, dus word 'n proses van optimalisering word saamgestel. Hierdie proses gaan voort totdat 'n bepaalde konvergensie kriteria voldoen is (bv. 'n gespesi seerde aantal generasies), waar na die beste individu in die bevolking dien as die uiteindelike oplossing vir die probleem. Hierdie studie ondersoek die genetiese algoritme, waarna 'n algoritme aangebied word om die uitdagings van strukturele optimalisering aan te spreek. Hierdie algoritme het alleenlik te doen met snit optimalisering; meetkunde, topologie en vorm optimalisering is buite die bestek van hierdie navorsing. Die motief agter die gebruik van 'n genetiese algoritme in hierdie studie is grootliks te danke aan sy vermoë om diskrete soek ruimtes te hanteer; klassieke soek metodes word gewoonlik beperk tot 'n vorm van 'n helling tegniek waarvoor die soektog ruimte deurlopende moet wees. Die algoritme is ook gekies as gevolg van sy vermoë om doeltre end deur groot soektog ruimtes te soek, wat gewoonlik die geval vir 'n strukturele probleem met optimering is. Die genetiese algoritme se prestasie sal ondersoek word deur die gebruik van standaarde toetse. Standarde toetse word gedoen vir beide vlak en ruimte kappe, die 10 - en 25 element vakwerk. Sulke probleme word tipies met spanning en verplasing beperkings ontleed. Na a oop van die bekragtiging van die algoritme, word praktiese probleme hanteer. Die eerste stap in die rigting sou wees om die 160 element vakwerk toets probleem te ondersoek. Hierdie probleem sal e ens aangepas word deur die toepassing van die Suid-Afrikaanse ontwerp standaarde, SANS (2005) aan die ontwerp. Dit is 'n meer realistiese benadering in vergelyking met net gespesi seerde spanning en verplasing beperkings as gevolg van die feit dat 'n element nie net eenvoudig dieselfde spanning beperking vir spanning en druk toegeken kan word nie; slankheid en knik e ekte moet ook in ag geneem word. In hierdie geval sal die soek ruimte nie meer net meer eenvoudig 'n sekere teoretiese soek ruimte wees nie, maar sal bestaan uit ware snitte wat uit die Suid Afrikaanse Konstruksie Handboek kom, SAISC (2008). Ten slotte sal die navorsing ondersoek instel na 'n standaard Eskom Transmissie toring en dit sal 'n wye verskeidenheid van onderwerpe aanspreek, soos om die modellering van die struktuur so realisties as moontlik te maak, tot die ondersoek van sleutelaspekte wat die probleem verskillend van standaard toets probleme maak en ook watter soort stappe geneem kan word om moontlike probleme te oor-kom. Die algoritme werk in parallel met 'n eindige element metode program, wat deur Dr GC van Rooyen verskaf is, wat die oplossings ontleed van die algoritme en verseker dat die struktuur lewensvatbaar is.
Xu, Hu. "Solver tuning with genetic algorithms". Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/eee8f5d9-ede2-4b87-af77-8142b2d0209c.
Texto completoLochtefeld, Darrell F. "Multi-objectivization in Genetic Algorithms". Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1308765665.
Texto completoMorrison, Jason (Jason Boyd) Carleton University Dissertation Computer Science. "Co-evolution and genetic algorithms". Ottawa, 1997.
Buscar texto completoHo, Shuk-ying. "Knowledge representation with genetic algorithms /". Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22030256.
Texto completoHarris, Steven C. "A genetic algorithm for robust simulation optimization". Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178645751.
Texto completoEriksson, Daniel. "Algorithmic Design of Graphical Resources for Games Using Genetic Algorithms". Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139332.
Texto completoFlaten, Erlend. "Using genetic algorithms for improving segmentation". Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9201.
Texto completoSegmentation is one of the core fields in image processing, and the first difficult step in processing and understanding images. There are dozens of different segmentation algorithm, but all these algorithms have some kind of “Achilles’ heal”, or may be limited to one or a few domains . This paper presents a possible solution to avoid problems with single segmentation algorithms by making it possible to use several algorithms. The algorithms can be used separately or in sequences of algorithms. Finally, an application is developed to give some insight into this new way of segmenting.
Amouzgar, Kaveh. "Multi-objective optimization using Genetic Algorithms". Thesis, Högskolan i Jönköping, Tekniska Högskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-19851.
Texto completoCzarn, Andrew Simon Timothy. "Statistical exploratory analysis of genetic algorithms". University of Western Australia. School of Computer Science and Software Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0030.
Texto completoKim, Jeongwook. "Genetic algorithms for smart embedded systems". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/13886.
Texto completoCarlson, Susan Elizabeth. "Component selection optimization using genetic algorithms". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17886.
Texto completoAltman, Erik R. (Erik Richter). "Genetic algorithms and cache replacement policy". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61096.
Texto completoIf better replacement policies exist, they may not be obvious. One way to find better policies is to study a large number of address traces for common patterns. Such an undertaking involves such a large amount of data, that some automated method of generating and evaluating policies is required. Genetic Algorithms provide such a method, and have been used successfully on a wide variety of tasks (21).
The best replacement policy found using this approach had a mean improvement in overall hit rate of 0.6% over LRU for the benchmarks used. This corresponds to 27% of the 2.2% mean difference between LRU and OPT. Performance of the best of these replacement policies was found to be generally superior to shadow cache (33), an enhanced replacement policy similar to some of those used here.
Iacoviello, Vincenzo. "Genetic algorithms and decision feedback filters". Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69599.
Texto completoAnderson, Jon K. "Genetic algorithms applied to graph theory". Virtual Press, 1999. http://liblink.bsu.edu/uhtbin/catkey/1136714.
Texto completoDepartment of Computer Science
Graham, Ian J. "Genetic algorithms for evolutionary product design". Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/6900.
Texto completoLancaster, John. "Project schedule optimisation utilising genetic algorithms". Thesis, Brunel University, 2007. http://bura.brunel.ac.uk/handle/2438/5798.
Texto completoAjlouni, Naim. "Genetic algorithms for control system design". Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308088.
Texto completoHatzikos, Vasilis E. "Genetic algorithms into iterative learning control". Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408314.
Texto completoMyers, Richard Oliver. "Genetic algorithms for ambiguous labelling problems". Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310985.
Texto completoBasanta, David. "Using genetic algorithms to evolve microstructures". Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421869.
Texto completoCARBONO, ALONSO JOAQUIN JUVINAO. "MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8242@1.
Texto completoGRUPO DE TECNOLOGIA DE COMPUTAÇÃO GRÁFICA - PUC-RIO
Com o crescimento da demanda de óleo, as empresas de petróleo têm sido forçadas a explorar novas reservas em águas cada vez mais profundas. Em função do alto custo das operações de exploração de petróleo, torna-se necessário o desenvolvimento de tecnologias capazes de aumentar a eficiência e reduzir os custos envolvidos. Neste contexto, a utilização de unidades flutuantes torna-se cada vez mais freqüente em águas profundas. O posicionamento das unidades flutuantes durante as operações de exploração de óleo é garantido pelas linhas de ancoragem, que são estruturas flexíveis compostas, geralmente, por trechos de aço, amarras e/ou cabos sintéticos. O presente trabalho apresenta o desenvolvimento de um Algoritmo Genético (AG) para solucionar o problema da disposição das linhas de ancoragem de unidades flutuantes utilizadas nas operações de exploração de petróleo. A distribuição das linhas de ancoragem é um dos fatores que influencia diretamente nos deslocamentos (offsets) sofridos pelas unidades flutuantes quando submetidas às ações ambientais, como ventos, ondas e correntes. Desta forma, o AG busca uma disposição ótima das linhas de ancoragem cujo objetivo final é a minimização dos deslocamentos da unidade flutuante. Os operadores básicos utilizados por este algoritmo são mutação, crossover e seleção. Neste trabalho, foi adotada a técnica steady-state, que só efetua a substituição de um ou dois indivíduos por geração. O cálculo da posição de equilíbrio estático da unidade flutuante é feito aplicando-se a equação da catenária para cada linha de ancoragem com o objetivo de se obterem as forças de restauração na unidade, e empregando-se um processo iterativo para calcular a sua posição final de equilíbrio.
With the increasing demand for oil, oil companies have been forced to exploit new fields in deep waters. Due to the high cost of oil exploitation operations, the development of technologies capable of increasing efficiency and reducing costs is crucial. In this context, the use of floating units in deep waters has become more frequent. The positioning of the floating units during oil exploitation operations is done using mooring lines, which are flexible structures usually made of steel wire, steel chain and/or synthetic cables. This work presents the development of a Genetic Algorithm (GA) procedure to solve the problem of the mooring pattern of floating units used in oil exploitation operations. The distribution of mooring lines is one of the factors that directly influence the displacements (offsets) suffered by floating units when subjected to environmental conditions such as winds, waves and currents. Thus, the GA seeks an optimum distribution of the mooring lines whose final goal is to minimize the units´ displacements. The basic operators used in this algorithm are mutation, crossover and selection. In the present work, the steady- state GA has been implemented, which performs the substitution of only one or two individuals per generation. The computation of the floating unit´s static equilibrium position is accomplished by applying the catenary equilibrium equation to each mooring line in order to obtain the out-of-balance forces on the unit, and by using an iterative process to compute the final unit equilibrium position.
Bourne, Juliet C. (Juliet Cassandra). "Setting language parameters using genetic algorithms". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/109629.
Texto completoViswanathan, Lakshmi. "Genetic algorithms for uncapacitated network design". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36022.
Texto completoIncludes bibliographical references (leaves 124).
by Viswanathan Lakshmi.
M.S.
Shaw, Nicholas Robert. "MRI magnet design using genetic algorithms". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619968.
Texto completoMedlar, A. J. "Manycore algorithms for genetic linkage analysis". Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1366896/.
Texto completoFang, Hsiao-Lan. "Genetic algorithms in timetabling and scheduling". Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/30185.
Texto completoRogers, Alex. "Modelling genetic algorithms and evolving populations". Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/261289/.
Texto completoLovestead, Raymond L. "Helical Antenna Optimization Using Genetic Algorithms". Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/35295.
Texto completoMaster of Science
MUPPIDI, SRINIVAS REDDY. "GENETIC ALGORITHMS FOR MULTI-OBJECTIVE PARTITIONING". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1080827924.
Texto completoDelibasis, Konstantinos K. "Genetic algorithms for medical image analysis". Thesis, University of Aberdeen, 1995. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU068560.
Texto completo