Literatura académica sobre el tema "Genetic algorithms"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Genetic algorithms".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Genetic algorithms"
Sumida, Brian. "Genetics for genetic algorithms". ACM SIGBIO Newsletter 12, n.º 2 (junio de 1992): 44–46. http://dx.doi.org/10.1145/130686.130694.
Texto completoRaol, Jitendra R. y Abhijit Jalisatgi. "From genetics to genetic algorithms". Resonance 1, n.º 8 (agosto de 1996): 43–54. http://dx.doi.org/10.1007/bf02837022.
Texto completoBabu, M. Nishidhar, Y. Kiran y A. Ramesh V. Rajendra. "Tackling Real-Coded Genetic Algorithms". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 de diciembre de 2017): 217–23. http://dx.doi.org/10.31142/ijtsrd5905.
Texto completoNico, Nico, Novrido Charibaldi y Yuli Fauziah. "Comparison of Memetic Algorithm and Genetic Algorithm on Nurse Picket Scheduling at Public Health Center". International Journal of Artificial Intelligence & Robotics (IJAIR) 4, n.º 1 (30 de mayo de 2022): 9–23. http://dx.doi.org/10.25139/ijair.v4i1.4323.
Texto completoAbbas, Basim K. "Genetic Algorithms for Quadratic Equations". Aug-Sept 2023, n.º 35 (26 de agosto de 2023): 36–42. http://dx.doi.org/10.55529/jecnam.35.36.42.
Texto completoCarnahan, J. y R. Sinha. "Nature's algorithms [genetic algorithms]". IEEE Potentials 20, n.º 2 (2001): 21–24. http://dx.doi.org/10.1109/45.954644.
Texto completoFrenzel, J. F. "Genetic algorithms". IEEE Potentials 12, n.º 3 (octubre de 1993): 21–24. http://dx.doi.org/10.1109/45.282292.
Texto completoFulkerson, William F. "Genetic Algorithms". Journal of the American Statistical Association 97, n.º 457 (marzo de 2002): 366. http://dx.doi.org/10.1198/jasa.2002.s468.
Texto completoForrest, Stephanie. "Genetic algorithms". ACM Computing Surveys 28, n.º 1 (marzo de 1996): 77–80. http://dx.doi.org/10.1145/234313.234350.
Texto completoHolland, John H. "Genetic Algorithms". Scientific American 267, n.º 1 (julio de 1992): 66–72. http://dx.doi.org/10.1038/scientificamerican0792-66.
Texto completoTesis sobre el tema "Genetic algorithms"
Bland, Ian Michael. "Generic systolic arrays for genetic algorithms". Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312529.
Texto completoAguiar, Marilton Sanchotene de. "Análise formal da complexidade de algoritmos genéticos". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1998. http://hdl.handle.net/10183/25941.
Texto completoThe objective of the work is to study the viability of treating optimization problems, considered intractable, through Genetic Algorithms, developing approaches for the qualitative evaluation of a Genetic Algorithm. Inside this theme, approached areas: complexity, classes of problems, analysis and development of algorithms and Genetic Algorithms, this last one being central object of the study. As product of the study of this theme, a development method of Genetic Algorithms is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The fact that a problem theoretically solvable isn’t enough to mean that it is solvable in pratice. A problem is denominated easy if in the worst case it possesses an algorithm reasonably efficient. And an algorithm is said reasonably efficient when a polynomial p exists such that for any entrance size n the algorithm terminates at maximum of p(n) steps [SZW 84]. Since a polynomial can be of very high order, then an algorithm of polynomial complexity can be very inefficient. The premise of the Genetic Algorithms is that one can find approximate solutions of problems of great computational complexity by means of a process of simulated evolution [LAG 96]. As product of the study of this theme, a method of development of Genetic Algorithms with the quality conscience is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The axiom set has the purpose of giving the semantics of the algorithm, in other words, it defines formally the operation of the algorithm, more specifically of the functions and procedures of the algorithm. And this, facilitates the planner of algorithms a larger safety in the development, because in order to prove the correction of a Genetic Algorithm that satisfies that model it is only necessary to prove that the procedures satisfy the axioms. To have conscience of the quality of an approximate algorithm, two factors are important: the accuracy and the complexity. This work lifts the important points for the study of the complexity of a Genetic Algorithm. Unhappily, they are conflicting factors, because as larger the accuracy, worse (higher) it is the complexity, and vice-versa. Thus, a study of the quality of a Genetic Algorithm, considered an approximate algorithm, would be only complete with the consideration of these two factors. But, this work provides a great step in direction of the study of the viability of the treatment of optimization problems through Genetic Algorithms.
Abu-Bakar, Nordin. "Adaptive genetic algorithms". Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343268.
Texto completoHayes, Christina Savannah Maria. "Generic properties of the infinite population genetic algorithm". Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/hayes/HayesC0806.pdf.
Texto completoWagner, Stefan. "Looking inside genetic algorithms /". Linz : Trauner, 2005. http://aleph.unisg.ch/hsgscan/hm00116856.pdf.
Texto completoCole, Rowena Marie. "Clustering with genetic algorithms". University of Western Australia. Dept. of Computer Science, 1998. http://theses.library.uwa.edu.au/adt-WU2003.0008.
Texto completoLapthorn, Barry Thomas. "Helioseismology and genetic algorithms". Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271261.
Texto completoDelman, Bethany. "Genetic algorithms in cryptography /". Link to online version, 2003. https://ritdml.rit.edu/dspace/handle/1850/263.
Texto completoKrüger, Franz David y Mohamad Nabeel. "Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.
Texto completoAs machine learning (ML) is being more and more frequent in the business world, information gathering through Data mining (DM) is on the rise, and DM-practitioners are generally using several thumb rules to avoid having to spend a decent amount of time to tune the hyperparameters (parameters that control the learning process) of an ML algorithm to gain a high accuracy score. The proposal in this report is to conduct an approach that systematically optimizes the ML algorithms using genetic algorithms (GA) and to evaluate if and how the model should be constructed to find global solutions for a specific data set. By implementing a GA approach on two ML-algorithms, K-nearest neighbors, and Random Forest, on two numerical data sets, Iris data set and Wisconsin breast cancer data set, the model is evaluated by its accuracy scores as well as the computational time which then is compared towards a search method, specifically exhaustive search. The results have shown that it is assumed that GA works well in finding great accuracy scores in a reasonable amount of time. There are some limitations as the parameter’s significance towards an ML algorithm may vary.
Yan, Ping. "Theory of simple genetic algorithms". Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446649.
Texto completoLibros sobre el tema "Genetic algorithms"
Man, K. F., K. S. Tang y S. Kwong. Genetic Algorithms. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0577-0.
Texto completo1942-, Buckles Bill P. y Petry Fred, eds. Genetic algorithms. Los Alamitos, Calif: IEEE Computer Society Press, 1986.
Buscar texto completoAnup, Kumar y Gupta Yash P, eds. Genetic algorithms. Oxford: Pergamon, 1995.
Buscar texto completoDr, Herrera Francisco y Verdegay José-Luis, eds. Genetic algorithms and soft computing. Heidelberg: Physica-Verlag, 1996.
Buscar texto completoLuque, Gabriel y Enrique Alba. Parallel Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22084-5.
Texto completoMutingi, Michael y Charles Mbohwa. Grouping Genetic Algorithms. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44394-2.
Texto completoE, Haupt S., ed. Practical genetic algorithms. 2a ed. Hoboken, N.J: John Wiley, 2004.
Buscar texto completoE, Haupt S., ed. Practical genetic algorithms. New York: Wiley, 1998.
Buscar texto completoLance, Chambers, ed. The practical handbook of genetic algorithms: Applications. 2a ed. Boca Raton, Fla: Chapman & Hall/CRC, 2001.
Buscar texto completoLance, Chambers, ed. Practical handbook of genetic algorithms. Boca Raton: CRC Press, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Genetic algorithms"
Hardy, Yorick y Willi-Hans Steeb. "Genetic Algorithms". En Classical and Quantum Computing, 313–400. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8366-5_15.
Texto completoDu, Ke-Lin y M. N. S. Swamy. "Genetic Algorithms". En Search and Optimization by Metaheuristics, 37–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41192-7_3.
Texto completoSastry, Kumara, David E. Goldberg y Graham Kendall. "Genetic Algorithms". En Search Methodologies, 93–117. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_4.
Texto completoRathore, Heena. "Genetic Algorithms". En Mapping Biological Systems to Network Systems, 97–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29782-8_8.
Texto completoAnsari, Nirwan y Edwin Hou. "Genetic Algorithms". En Computational Intelligence for Optimization, 83–97. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6331-0_6.
Texto completoRowe, Jonathan E. "Genetic Algorithms". En Springer Handbook of Computational Intelligence, 825–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_42.
Texto completoReeves, Colin R. "Genetic Algorithms". En Handbook of Metaheuristics, 109–39. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1665-5_5.
Texto completoDracopoulos, Dimitris C. "Genetic Algorithms". En Perspectives in Neural Computing, 111–31. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0903-7_7.
Texto completoKingdon, Jason. "Genetic Algorithms". En Perspectives in Neural Computing, 55–80. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0949-5_4.
Texto completoDawid, Herbert. "Genetic Algorithms". En Lecture Notes in Economics and Mathematical Systems, 37–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-00211-7_3.
Texto completoActas de conferencias sobre el tema "Genetic algorithms"
Skomorokhov, Alexander O. "Genetic algorithms". En the conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/253341.253399.
Texto completoAlfonseca, Manuel. "Genetic algorithms". En the international conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/114054.114056.
Texto completoButt, Fouad y Abdolreza Abhari. "Genetic algorithms". En the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878779.
Texto completoPandey, Hari Mohan, Anurag Dixit y Deepti Mehrotra. "Genetic algorithms". En the CUBE International Information Technology Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2381716.2381766.
Texto completoChapman, Colin D., Kazuhiro Saitou y Mark J. Jakiela. "Genetic Algorithms As an Approach to Configuration and Topology Design". En ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0338.
Texto completoCarlson, Susan E., Michael Ingrim y Ronald Shonkwiler. "Component Selection Using Genetic Algorithms". En ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0336.
Texto completoJesus, Alexandre D., Arnaud Liefooghe, Bilel Derbel y Luís Paquete. "Algorithm selection of anytime algorithms". En GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377930.3390185.
Texto completoLadkany, George S. y Mohamed B. Trabia. "Incorporating Twinkling in Genetic Algorithms for Global Optimization". En ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49256.
Texto completoMisir, Mustafa, Stephanus Daniel Handoko y Hoong Chuin Lau. "Building algorithm portfolios for memetic algorithms". En GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598455.
Texto completoAlba, Enrique. "Cellular genetic algorithms". En GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2605356.
Texto completoInformes sobre el tema "Genetic algorithms"
Arthur, Jennifer Ann. Genetic Algorithms. Office of Scientific and Technical Information (OSTI), agosto de 2017. http://dx.doi.org/10.2172/1375151.
Texto completoSharp, David H., John Reinitz y Eric Mjolsness. Genetic Algorithms for Genetic Neural Nets. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada256223.
Texto completoKargupta, H. Messy genetic algorithms: Recent developments. Office of Scientific and Technical Information (OSTI), septiembre de 1996. http://dx.doi.org/10.2172/378868.
Texto completoMessa, K. y M. Lybanon. Curve Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1991. http://dx.doi.org/10.21236/ada247206.
Texto completoThomas, E. V. Frequency selection using genetic algorithms. Office of Scientific and Technical Information (OSTI), mayo de 1993. http://dx.doi.org/10.2172/10177075.
Texto completoVlek, R. J. y D. J. M. Willems. Recipe reconstruction with genetic algorithms. Wageningen: Wageningen Food & Biobased Research, 2021. http://dx.doi.org/10.18174/540621.
Texto completoCobb, Helen G. y John J. Grefenstette. Genetic Algorithms for Tracking Changing Environments. Fort Belvoir, VA: Defense Technical Information Center, enero de 1993. http://dx.doi.org/10.21236/ada294075.
Texto completoPittman, Jennifer y C. A. Murthy. Optimal Line Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, julio de 1997. http://dx.doi.org/10.21236/ada328266.
Texto completoGoldberg, David. Competent Probabilistic Model Building Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, julio de 2003. http://dx.doi.org/10.21236/ada416564.
Texto completoVemuri, V. R. Genetic algorithms at UC Davis/LLNL. Office of Scientific and Technical Information (OSTI), diciembre de 1993. http://dx.doi.org/10.2172/10122640.
Texto completo