Artículos de revistas sobre el tema "Generative sequence models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generative sequence models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wang, Yongkang, Xuan Liu, Feng Huang, Zhankun Xiong y Wen Zhang. "A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de marzo de 2024): 3–11. http://dx.doi.org/10.1609/aaai.v38i1.27749.
Texto completoWu, Zachary, Kadina E. Johnston, Frances H. Arnold y Kevin K. Yang. "Protein sequence design with deep generative models". Current Opinion in Chemical Biology 65 (diciembre de 2021): 18–27. http://dx.doi.org/10.1016/j.cbpa.2021.04.004.
Texto completoAkl, Hoda, Brooke Emison, Xiaochuan Zhao, Arup Mondal, Alberto Perez y Purushottam D. Dixit. "GENERALIST: A latent space based generative model for protein sequence families". PLOS Computational Biology 19, n.º 11 (27 de noviembre de 2023): e1011655. http://dx.doi.org/10.1371/journal.pcbi.1011655.
Texto completoFeinauer, Christoph, Barthelemy Meynard-Piganeau y Carlo Lucibello. "Interpretable pairwise distillations for generative protein sequence models". PLOS Computational Biology 18, n.º 6 (23 de junio de 2022): e1010219. http://dx.doi.org/10.1371/journal.pcbi.1010219.
Texto completoWon, K. J., C. Saunders y A. Prügel-Bennett. "Evolving Fisher Kernels for Biological Sequence Classification". Evolutionary Computation 21, n.º 1 (marzo de 2013): 83–105. http://dx.doi.org/10.1162/evco_a_00065.
Texto completoLiu, Yitian y Zhouhui Lian. "DeepCalliFont: Few-Shot Chinese Calligraphy Font Synthesis by Integrating Dual-Modality Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 4 (24 de marzo de 2024): 3774–82. http://dx.doi.org/10.1609/aaai.v38i4.28168.
Texto completoSafranchik, Esteban, Shiying Luo y Stephen Bach. "Weakly Supervised Sequence Tagging from Noisy Rules". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5570–78. http://dx.doi.org/10.1609/aaai.v34i04.6009.
Texto completoPolceanu, Mihai, Julie Porteous, Alan Lindsay y Marc Cavazza. "Narrative Plan Generation with Self-Supervised Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 7 (18 de mayo de 2021): 5984–92. http://dx.doi.org/10.1609/aaai.v35i7.16747.
Texto completoZhang, Zhiyuan y Zhanshan Wang. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network". Mathematics 11, n.º 20 (19 de octubre de 2023): 4350. http://dx.doi.org/10.3390/math11204350.
Texto completoHawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen y David Bikard. "Generating functional protein variants with variational autoencoders". PLOS Computational Biology 17, n.º 2 (26 de febrero de 2021): e1008736. http://dx.doi.org/10.1371/journal.pcbi.1008736.
Texto completoTang, Fangfang, Mengyuan Ren, Xiaofan Li, Zhanglin Lin y Xiaofeng Yang. "Generating Novel and Soluble Class II Fructose-1,6-Bisphosphate Aldolase with ProteinGAN". Catalysts 13, n.º 12 (22 de noviembre de 2023): 1457. http://dx.doi.org/10.3390/catal13121457.
Texto completoLu, Zhengdong, Todd K. Leen y Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals". Neural Computation 23, n.º 9 (septiembre de 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Texto completoPhilip, Philemon y Sidra Minhas. "A Brief Survey on Natural Language Processing Based Text Generation and Evaluation Techniques". VFAST Transactions on Software Engineering 10, n.º 3 (27 de septiembre de 2022): 24–36. http://dx.doi.org/10.21015/vtse.v10i3.1104.
Texto completoBitard-Feildel, Tristan. "Navigating the amino acid sequence space between functional proteins using a deep learning framework". PeerJ Computer Science 7 (17 de septiembre de 2021): e684. http://dx.doi.org/10.7717/peerj-cs.684.
Texto completoRamakers, Julius, Christopher Frederik Blum, Sabrina König, Stefan Harmeling y Markus Kollmann. "De novo prediction of RNA 3D structures with deep generative models". PLOS ONE 19, n.º 2 (15 de febrero de 2024): e0297105. http://dx.doi.org/10.1371/journal.pone.0297105.
Texto completoHazra, Debapriya, Mi-Ryung Kim y Yung-Cheol Byun. "Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome". International Journal of Molecular Sciences 23, n.º 7 (28 de marzo de 2022): 3701. http://dx.doi.org/10.3390/ijms23073701.
Texto completoZhang, Zhaohui, Lijun Yang, Ligong Chen, Qiuwen Liu, Ying Meng, Pengwei Wang y Maozhen Li. "A generative adversarial network–based method for generating negative financial samples". International Journal of Distributed Sensor Networks 16, n.º 2 (febrero de 2020): 155014772090705. http://dx.doi.org/10.1177/1550147720907053.
Texto completoShen, Xiaojuan, Tao Zeng, Nianhang Chen, Jiabo Li y Ruibo Wu. "NIMO: A Natural Product-Inspired Molecular Generative Model Based on Conditional Transformer". Molecules 29, n.º 8 (19 de abril de 2024): 1867. http://dx.doi.org/10.3390/molecules29081867.
Texto completoXuan, Bona, Jin Li y Yafei Song. "SFCWGAN-BiTCN with Sequential Features for Malware Detection". Applied Sciences 13, n.º 4 (5 de febrero de 2023): 2079. http://dx.doi.org/10.3390/app13042079.
Texto completoTruong, Thanh-Dat, Chi Nhan Duong, Minh-Triet Tran, Ngan Le y Khoa Luu. "Fast Flow Reconstruction via Robust Invertible n × n Convolution". Future Internet 13, n.º 7 (8 de julio de 2021): 179. http://dx.doi.org/10.3390/fi13070179.
Texto completoYou, Yuyang, Xiaoyu Guo, Xuyang Zhong y Zhihong Yang. "A Few-Shot Learning-Based EEG and Stage Transition Sequence Generator for Improving Sleep Staging Performance". Biomedicines 10, n.º 12 (22 de noviembre de 2022): 3006. http://dx.doi.org/10.3390/biomedicines10123006.
Texto completoWang, Zhenyi, Ping Yu, Yang Zhao, Ruiyi Zhang, Yufan Zhou, Junsong Yuan y Changyou Chen. "Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 12281–88. http://dx.doi.org/10.1609/aaai.v34i07.6911.
Texto completoKim, Ha Young y Dongsup Kim. "Prediction of mutation effects using a deep temporal convolutional network". Bioinformatics 36, n.º 7 (20 de noviembre de 2019): 2047–52. http://dx.doi.org/10.1093/bioinformatics/btz873.
Texto completoHärkönen, Erik, Miika Aittala, Tuomas Kynkäänniemi, Samuli Laine, Timo Aila y Jaakko Lehtinen. "Disentangling random and cyclic effects in time-lapse sequences". ACM Transactions on Graphics 41, n.º 4 (julio de 2022): 1–13. http://dx.doi.org/10.1145/3528223.3530170.
Texto completoWilburn, Grey W. y Sean R. Eddy. "Remote homology search with hidden Potts models". PLOS Computational Biology 16, n.º 11 (30 de noviembre de 2020): e1008085. http://dx.doi.org/10.1371/journal.pcbi.1008085.
Texto completoHu, Yijia. "Performance exploration of Generative Pre-trained Transformer-2 for lyrics generation". Applied and Computational Engineering 48, n.º 1 (19 de marzo de 2024): 53–60. http://dx.doi.org/10.54254/2755-2721/48/20241154.
Texto completoNguyen, Viet, Giang Vu, Tung Nguyen Thanh, Khoat Than y Toan Tran. "On Inference Stability for Diffusion Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de marzo de 2024): 14449–56. http://dx.doi.org/10.1609/aaai.v38i13.29359.
Texto completoLi, Shuyu y Yunsick Sung. "Transformer-Based Seq2Seq Model for Chord Progression Generation". Mathematics 11, n.º 5 (23 de febrero de 2023): 1111. http://dx.doi.org/10.3390/math11051111.
Texto completoZAKI, NAZAR M., SAFAAI DERIS y ROSLI M. ILLIAS. "FEATURES EXTRACTION FOR PROTEIN HOMOLOGY DETECTION USING HIDDEN MARKOV MODELS COMBINING SCORES". International Journal of Computational Intelligence and Applications 04, n.º 01 (marzo de 2004): 1–12. http://dx.doi.org/10.1142/s1469026804001161.
Texto completoIsacchini, Giulio, Aleksandra M. Walczak, Thierry Mora y Armita Nourmohammad. "Deep generative selection models of T and B cell receptor repertoires with soNNia". Proceedings of the National Academy of Sciences 118, n.º 14 (1 de abril de 2021): e2023141118. http://dx.doi.org/10.1073/pnas.2023141118.
Texto completoWang, Chuantao, Xuexin Yang y Linkai Ding. "Imbalanced sentiment classification based on sequence generative adversarial nets". Journal of Intelligent & Fuzzy Systems 39, n.º 5 (19 de noviembre de 2020): 7909–19. http://dx.doi.org/10.3233/jifs-201370.
Texto completoStokes, James y John Terilla. "Probabilistic Modeling with Matrix Product States". Entropy 21, n.º 12 (17 de diciembre de 2019): 1236. http://dx.doi.org/10.3390/e21121236.
Texto completoWang, Xun, Changnan Gao, Peifu Han, Xue Li, Wenqi Chen, Alfonso Rodríguez Patón, Shuang Wang y Pan Zheng. "PETrans: De Novo Drug Design with Protein-Specific Encoding Based on Transfer Learning". International Journal of Molecular Sciences 24, n.º 2 (6 de enero de 2023): 1146. http://dx.doi.org/10.3390/ijms24021146.
Texto completoWu, Shaohan, Jingfeng Xue, Yong Wang y Zixiao Kong. "Black-Box Evasion Attack Method Based on Confidence Score of Benign Samples". Electronics 12, n.º 11 (23 de mayo de 2023): 2346. http://dx.doi.org/10.3390/electronics12112346.
Texto completoRuss, William P., Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich, Peter Kast, Donald Hilvert et al. "An evolution-based model for designing chorismate mutase enzymes". Science 369, n.º 6502 (23 de julio de 2020): 440–45. http://dx.doi.org/10.1126/science.aba3304.
Texto completoChen, Yunjie, Marius Staring, Olaf M. Neve, Stephan R. Romeijn, Erik F. Hensen, Berit M. Verbist, Jelmer M. Wolterink y Qian Tao. "CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation". Machine Learning for Biomedical Imaging 2, Generative Models (9 de febrero de 2024): 657–85. http://dx.doi.org/10.59275/j.melba.2024-d61g.
Texto completoQi, Jingyuan, Minqian Liu, Ying Shen, Zhiyang Xu y Lifu Huang. "MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 17 (24 de marzo de 2024): 18888–96. http://dx.doi.org/10.1609/aaai.v38i17.29854.
Texto completoLiu, Danyang, Juntao Li, Meng-Hsuan Yu, Ziming Huang, Gongshen Liu, Dongyan Zhao y Rui Yan. "A Character-Centric Neural Model for Automated Story Generation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 02 (3 de abril de 2020): 1725–32. http://dx.doi.org/10.1609/aaai.v34i02.5536.
Texto completoTubiana, Jérôme, Lucia Adriana-Lifshits, Michael Nissan, Matan Gabay, Inbal Sher, Marina Sova, Haim J. Wolfson y Maayan Gal. "Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions". PLOS Computational Biology 19, n.º 2 (2 de febrero de 2023): e1010874. http://dx.doi.org/10.1371/journal.pcbi.1010874.
Texto completoShen, Kevin. "Multi-world Model in Continual Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 21 (24 de marzo de 2024): 23757–59. http://dx.doi.org/10.1609/aaai.v38i21.30555.
Texto completoVaškevičius, Mantas, Jurgita Kapočiūtė-Dzikienė y Liudas Šlepikas. "Generative LLMs in Organic Chemistry: Transforming Esterification Reactions into Natural Language Procedures". Applied Sciences 13, n.º 24 (11 de diciembre de 2023): 13140. http://dx.doi.org/10.3390/app132413140.
Texto completoMarocco, Paolo y Roberto Gigliucci. "An Investigation about Entailment and Narrative by AI Techniques (Generative Models)". Communication, Society and Media 3, n.º 4 (16 de noviembre de 2020): p61. http://dx.doi.org/10.22158/csm.v3n4p61.
Texto completoLee, Sangho, Hayun Lee y Dongkun Shin. "Proxyformer: Nyström-Based Linear Transformer with Trainable Proxy Tokens". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de marzo de 2024): 13418–26. http://dx.doi.org/10.1609/aaai.v38i12.29244.
Texto completoLEE, CHAN-SU y DIMITRIS SAMARAS. "ANALYSIS AND CONTROL OF FACIAL EXPRESSIONS USING DECOMPOSABLE NONLINEAR GENERATIVE MODELS". International Journal of Pattern Recognition and Artificial Intelligence 28, n.º 05 (31 de julio de 2014): 1456009. http://dx.doi.org/10.1142/s0218001414560096.
Texto completoLiu, Zuozhu, Thiparat Chotibut, Christopher Hillar y Shaowei Lin. "Biologically Plausible Sequence Learning with Spiking Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 02 (3 de abril de 2020): 1316–23. http://dx.doi.org/10.1609/aaai.v34i02.5487.
Texto completoZhou, Kun, Wenyong Wang, Teng Hu y Kai Deng. "Time Series Forecasting and Classification Models Based on Recurrent with Attention Mechanism and Generative Adversarial Networks". Sensors 20, n.º 24 (16 de diciembre de 2020): 7211. http://dx.doi.org/10.3390/s20247211.
Texto completoWang, Yi. "Intelligent auxiliary system for music performance under edge computing and long short-term recurrent neural networks". PLOS ONE 18, n.º 5 (8 de mayo de 2023): e0285496. http://dx.doi.org/10.1371/journal.pone.0285496.
Texto completoLi, Longyuan, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan y Guangjian Tian. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de mayo de 2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Texto completoMurad, Taslim, Sarwan Ali y Murray Patterson. "Exploring the Potential of GANs in Biological Sequence Analysis". Biology 12, n.º 6 (14 de junio de 2023): 854. http://dx.doi.org/10.3390/biology12060854.
Texto completoTrinquier, Jeanne, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi y Martin Weigt. "Efficient generative modeling of protein sequences using simple autoregressive models". Nature Communications 12, n.º 1 (4 de octubre de 2021). http://dx.doi.org/10.1038/s41467-021-25756-4.
Texto completo