Artículos de revistas sobre el tema "Generative classifiers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generative classifiers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Varga, Michal, Ján Jadlovský y Slávka Jadlovská. "Generative Enhancement of 3D Image Classifiers". Applied Sciences 10, n.º 21 (22 de octubre de 2020): 7433. http://dx.doi.org/10.3390/app10217433.
Texto completoShakhuro, V. I. y A. S. Konushin. "IMAGE SYNTHESIS WITH NEURAL NETWORKS FOR TRAFFIC SIGN CLASSIFICATION". Computer Optics 42, n.º 1 (30 de marzo de 2018): 105–12. http://dx.doi.org/10.18287/2412-6179-2018-42-1-105-112.
Texto completoSensoy, Murat, Lance Kaplan, Federico Cerutti y Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Texto completoYakura, Hiromu, Youhei Akimoto y Jun Sakuma. "Generate (Non-Software) Bugs to Fool Classifiers". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 1070–78. http://dx.doi.org/10.1609/aaai.v34i01.5457.
Texto completoHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju y S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers". International Journal of Mathematics and Computers in Simulation 16 (28 de junio de 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Texto completoChen, Wei, Xinmiao Chen y Xiao Sun. "Emotional dialog generation via multiple classifiers based on a generative adversarial network". Virtual Reality & Intelligent Hardware 3, n.º 1 (febrero de 2021): 18–32. http://dx.doi.org/10.1016/j.vrih.2020.12.001.
Texto completoLu, Zhengdong, Todd K. Leen y Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals". Neural Computation 23, n.º 9 (septiembre de 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Texto completoAmiryousefi, Ali, Ville Kinnula y Jing Tang. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability". Mathematics 10, n.º 5 (5 de marzo de 2022): 828. http://dx.doi.org/10.3390/math10050828.
Texto completoElzobi, Moftah y Ayoub Al-Hamadi. "Generative vs. Discriminative Recognition Models for Off-Line Arabic Handwriting". Sensors 18, n.º 9 (24 de agosto de 2018): 2786. http://dx.doi.org/10.3390/s18092786.
Texto completoKaraliutė, Marta y Kęstutis Dučinskas. "Performance of the supervised generative classifiers of spatio-temporal areal data using various spatial autocorrelation indexes". Nonlinear Analysis: Modelling and Control 28 (22 de febrero de 2023): 1–14. http://dx.doi.org/10.15388/namc.2023.28.31434.
Texto completoKumar Bhowmik, Tapan. "Naive Bayes vs Logistic Regression: Theory, Implementation and Experimental Validation". Inteligencia Artificial 18, n.º 56 (18 de diciembre de 2015): 14. http://dx.doi.org/10.4114/intartif.vol18iss56pp14-30.
Texto completoPerina, Alessandro, Marco Cristani, Umberto Castellani, Vittorio Murino y Nebojsa Jojic. "Free Energy Score Spaces: Using Generative Information in Discriminative Classifiers". IEEE Transactions on Pattern Analysis and Machine Intelligence 34, n.º 7 (julio de 2012): 1249–62. http://dx.doi.org/10.1109/tpami.2011.241.
Texto completoFisch, Dominik, Edgar Kalkowski y Bernhard Sick. "Knowledge Fusion for Probabilistic Generative Classifiers with Data Mining Applications". IEEE Transactions on Knowledge and Data Engineering 26, n.º 3 (marzo de 2014): 652–66. http://dx.doi.org/10.1109/tkde.2013.20.
Texto completoSimon, Judy. "Image Augmentation based on GAN deep learning approach with Textual Content Descriptors". September 2021 3, n.º 3 (1 de noviembre de 2021): 210–25. http://dx.doi.org/10.36548/jitdw.2021.3.005.
Texto completoEpshteyn, A. y G. DeJong. "Generative Prior Knowledge for Discriminative Classification". Journal of Artificial Intelligence Research 27 (25 de septiembre de 2006): 25–53. http://dx.doi.org/10.1613/jair.1934.
Texto completoWang, Liwei, Xiong Li, Zhuowen Tu y Jiaya Jia. "Discriminative Clustering via Generative Feature Mapping". Proceedings of the AAAI Conference on Artificial Intelligence 26, n.º 1 (20 de septiembre de 2021): 1162–68. http://dx.doi.org/10.1609/aaai.v26i1.8305.
Texto completoMontero, Alberto, Elisenda Bonet-Carne y Xavier Paolo Burgos-Artizzu. "Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification". Sensors 21, n.º 23 (29 de noviembre de 2021): 7975. http://dx.doi.org/10.3390/s21237975.
Texto completoAbedi, Masoud, Lars Hempel, Sina Sadeghi y Toralf Kirsten. "GAN-Based Approaches for Generating Structured Data in the Medical Domain". Applied Sciences 12, n.º 14 (13 de julio de 2022): 7075. http://dx.doi.org/10.3390/app12147075.
Texto completoFisch, Dominik, Christian Gruhl, Edgar Kalkowski, Bernhard Sick y Seppo J. Ovaska. "Towards automation of knowledge understanding: An approach for probabilistic generative classifiers". Information Sciences 370-371 (noviembre de 2016): 476–96. http://dx.doi.org/10.1016/j.ins.2016.08.016.
Texto completoLi, Yuanzhang, Yaxiao Wang, Ye Wang, Lishan Ke y Yu-an Tan. "A feature-vector generative adversarial network for evading PDF malware classifiers". Information Sciences 523 (junio de 2020): 38–48. http://dx.doi.org/10.1016/j.ins.2020.02.075.
Texto completoWang, Tianshi, Li Liu, Huaxiang Zhang, Long Zhang y Xiuxiu Chen. "Joint Character-Level Convolutional and Generative Adversarial Networks for Text Classification". Complexity 2020 (30 de abril de 2020): 1–11. http://dx.doi.org/10.1155/2020/8516216.
Texto completoSandouka, Soha B., Yakoub Bazi, Haikel Alhichri y Naif Alajlan. "Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection". Entropy 23, n.º 8 (21 de agosto de 2021): 1089. http://dx.doi.org/10.3390/e23081089.
Texto completoSubedi, Bharat, V. E. Sathishkumar, V. Maheshwari, M. Sandeep Kumar, Prabhu Jayagopal y Shaikh Muhammad Allayear. "Feature Learning-Based Generative Adversarial Network Data Augmentation for Class-Based Few-Shot Learning". Mathematical Problems in Engineering 2022 (21 de julio de 2022): 1–20. http://dx.doi.org/10.1155/2022/9710667.
Texto completoLiakos, Konstantinos G., Georgios K. Georgakilas, Fotis C. Plessas y Paris Kitsos. "GAINESIS: Generative Artificial Intelligence NEtlists SynthesIS". Electronics 11, n.º 2 (13 de enero de 2022): 245. http://dx.doi.org/10.3390/electronics11020245.
Texto completoLevine, AB, J. Peng, SJM Jones, A. Bashashati y S. Yip. "Synthesis of glioma histopathology images using generative adversarial networks". Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 48, s1 (mayo de 2021): S3. http://dx.doi.org/10.1017/cjn.2021.91.
Texto completoGraña, Manuel, Leire Ozaeta y Darya Chyzhyk. "Resting State Effective Connectivity Allows Auditory Hallucination Discrimination". International Journal of Neural Systems 27, n.º 05 (3 de mayo de 2017): 1750019. http://dx.doi.org/10.1142/s0129065717500198.
Texto completoNan, Zhixiong, Yang Liu, Nanning Zheng y Song-Chun Zhu. "Recognizing Unseen Attribute-Object Pair with Generative Model". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 8811–18. http://dx.doi.org/10.1609/aaai.v33i01.33018811.
Texto completoChen, Zhijun, Jingming Zhang, Yishi Zhang y Zihao Huang. "Traffic Accident Data Generation Based on Improved Generative Adversarial Networks". Sensors 21, n.º 17 (27 de agosto de 2021): 5767. http://dx.doi.org/10.3390/s21175767.
Texto completoXu, Tingting, Ye Zhao y Xueliang Liu. "Dual Generative Network with Discriminative Information for Generalized Zero-Shot Learning". Complexity 2021 (28 de febrero de 2021): 1–11. http://dx.doi.org/10.1155/2021/6656797.
Texto completoPeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou y Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers". Sensors 23, n.º 2 (12 de enero de 2023): 900. http://dx.doi.org/10.3390/s23020900.
Texto completoAvdoshin, S. M., D. V. Pantiukhin, I. M. Voronkov, A. N. Nazarov, V. I. Muhamadiev, M. K. Gordenko, Nhich Van Dam y Ngoc Diep Nguyen. "Analysis of Neural Network Intrusion Detection Methods and Datasets for their Training". Informacionnye Tehnologii 28, n.º 12 (14 de diciembre de 2022): 644–53. http://dx.doi.org/10.17587/it.28.644-653.
Texto completoZhen, Hao, Yucheng Shi, Jidong J. Yang y Javad Mohammadpour Vehni. "Co-supervised learning paradigm with conditional generative adversarial networks for sample-efficient classification". Applied Computing and Intelligence 3, n.º 1 (2022): 13–26. http://dx.doi.org/10.3934/aci.2023002.
Texto completoLee, Jeongmin, Younkyoung Yoon y Junseok Kwon. "Generative Adversarial Network for Class-Conditional Data Augmentation". Applied Sciences 10, n.º 23 (26 de noviembre de 2020): 8415. http://dx.doi.org/10.3390/app10238415.
Texto completoFaysal, Atik, Wai Keng Ngui, Meng Hee Lim y Mohd Salman Leong. "Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis". Sensors 21, n.º 23 (4 de diciembre de 2021): 8114. http://dx.doi.org/10.3390/s21238114.
Texto completoLa Salvia, Marco, Emanuele Torti, Raquel Leon, Himar Fabelo, Samuel Ortega, Beatriz Martinez-Vega, Gustavo M. Callico y Francesco Leporati. "Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application". Sensors 22, n.º 16 (17 de agosto de 2022): 6145. http://dx.doi.org/10.3390/s22166145.
Texto completoBhuvaneswari, M. "Gaussian mixture model: An application to parameter estimation and medical image classification". Journal of Scientific and Innovative Research 5, n.º 3 (25 de junio de 2016): 100–105. http://dx.doi.org/10.31254/jsir.2016.5308.
Texto completoShroff, Jugal, Rahee Walambe, Sunil Kumar Singh y Ketan Kotecha. "Enhanced Security Against Volumetric DDoS Attacks Using Adversarial Machine Learning". Wireless Communications and Mobile Computing 2022 (11 de marzo de 2022): 1–10. http://dx.doi.org/10.1155/2022/5757164.
Texto completoOstovan, Mahdi, Sadegh Samadi y Alireza Kazemi. "Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network". Computational Intelligence and Neuroscience 2022 (12 de abril de 2022): 1–8. http://dx.doi.org/10.1155/2022/7365544.
Texto completoAl-Qaderi, Mohammad, Elfituri Lahamer y Ahmad Rad. "A Two-Level Speaker Identification System via Fusion of Heterogeneous Classifiers and Complementary Feature Cooperation". Sensors 21, n.º 15 (28 de julio de 2021): 5097. http://dx.doi.org/10.3390/s21155097.
Texto completoAndrade, Daniel, Akihiro Tamura y Masaaki Tsuchida. "Analysis of the Use of Background Distribution for Naive Bayes Classifiers". Journal of Intelligent Systems 28, n.º 2 (24 de abril de 2019): 259–73. http://dx.doi.org/10.1515/jisys-2017-0016.
Texto completoGangal, Varun, Abhinav Arora, Arash Einolghozati y Sonal Gupta. "Likelihood Ratios and Generative Classifiers for Unsupervised Out-of-Domain Detection in Task Oriented Dialog". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 7764–71. http://dx.doi.org/10.1609/aaai.v34i05.6280.
Texto completoXue, Jing-Hao y D. Michael Titterington. "Comment on “On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes”". Neural Processing Letters 28, n.º 3 (26 de octubre de 2008): 169–87. http://dx.doi.org/10.1007/s11063-008-9088-7.
Texto completoWang, Guangxing y Peng Ren. "Hyperspectral Image Classification with Feature-Oriented Adversarial Active Learning". Remote Sensing 12, n.º 23 (26 de noviembre de 2020): 3879. http://dx.doi.org/10.3390/rs12233879.
Texto completoKaiser, Christian, Matthias Schaufelberger, Reinald Peter Kühle, Andreas Wachter, Frederic Weichel, Niclas Hagen, Friedemann Ringwald et al. "Generative-Adversarial-Network-Based Data Augmentation for the Classification of Craniosynostosis". Current Directions in Biomedical Engineering 8, n.º 2 (1 de agosto de 2022): 17–20. http://dx.doi.org/10.1515/cdbme-2022-1005.
Texto completoForster, Dennis, Abdul-Saboor Sheikh y Jörg Lücke. "Neural Simpletrons: Learning in the Limit of Few Labels with Directed Generative Networks". Neural Computation 30, n.º 8 (agosto de 2018): 2113–74. http://dx.doi.org/10.1162/neco_a_01100.
Texto completoCutellic, Pierre. "Towards encoding shape features with visual event-related potential based brain–computer interface for generative design". International Journal of Architectural Computing 17, n.º 1 (marzo de 2019): 88–102. http://dx.doi.org/10.1177/1478077119832465.
Texto completoHe, Junpeng, Lei Luo, Kun Xiao, Xiyu Fang y Yun Li. "Generate qualified adversarial attacks and foster enhanced models based on generative adversarial networks". Intelligent Data Analysis 26, n.º 5 (5 de septiembre de 2022): 1359–77. http://dx.doi.org/10.3233/ida-216134.
Texto completoWang, Chenyue, Linlin Zhang, Kai Zhao, Xuhui Ding y Xusheng Wang. "AdvAndMal: Adversarial Training for Android Malware Detection and Family Classification". Symmetry 13, n.º 6 (17 de junio de 2021): 1081. http://dx.doi.org/10.3390/sym13061081.
Texto completoHeesch, Mateusz, Michał Dziendzikowski, Krzysztof Mendrok y Ziemowit Dworakowski. "Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks". Sensors 22, n.º 10 (19 de mayo de 2022): 3848. http://dx.doi.org/10.3390/s22103848.
Texto completoLi, Jie, Boyu Zhao, Kai Wu, Zhicheng Dong, Xuerui Zhang y Zhihao Zheng. "A Representation Generation Approach of Transmission Gear Based on Conditional Generative Adversarial Network". Actuators 10, n.º 5 (23 de abril de 2021): 86. http://dx.doi.org/10.3390/act10050086.
Texto completo