Literatura académica sobre el tema "Generative classifiers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Generative classifiers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Generative classifiers"
Varga, Michal, Ján Jadlovský y Slávka Jadlovská. "Generative Enhancement of 3D Image Classifiers". Applied Sciences 10, n.º 21 (22 de octubre de 2020): 7433. http://dx.doi.org/10.3390/app10217433.
Texto completoShakhuro, V. I. y A. S. Konushin. "IMAGE SYNTHESIS WITH NEURAL NETWORKS FOR TRAFFIC SIGN CLASSIFICATION". Computer Optics 42, n.º 1 (30 de marzo de 2018): 105–12. http://dx.doi.org/10.18287/2412-6179-2018-42-1-105-112.
Texto completoSensoy, Murat, Lance Kaplan, Federico Cerutti y Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Texto completoYakura, Hiromu, Youhei Akimoto y Jun Sakuma. "Generate (Non-Software) Bugs to Fool Classifiers". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 1070–78. http://dx.doi.org/10.1609/aaai.v34i01.5457.
Texto completoHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju y S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers". International Journal of Mathematics and Computers in Simulation 16 (28 de junio de 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Texto completoChen, Wei, Xinmiao Chen y Xiao Sun. "Emotional dialog generation via multiple classifiers based on a generative adversarial network". Virtual Reality & Intelligent Hardware 3, n.º 1 (febrero de 2021): 18–32. http://dx.doi.org/10.1016/j.vrih.2020.12.001.
Texto completoLu, Zhengdong, Todd K. Leen y Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals". Neural Computation 23, n.º 9 (septiembre de 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Texto completoAmiryousefi, Ali, Ville Kinnula y Jing Tang. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability". Mathematics 10, n.º 5 (5 de marzo de 2022): 828. http://dx.doi.org/10.3390/math10050828.
Texto completoElzobi, Moftah y Ayoub Al-Hamadi. "Generative vs. Discriminative Recognition Models for Off-Line Arabic Handwriting". Sensors 18, n.º 9 (24 de agosto de 2018): 2786. http://dx.doi.org/10.3390/s18092786.
Texto completoKaraliutė, Marta y Kęstutis Dučinskas. "Performance of the supervised generative classifiers of spatio-temporal areal data using various spatial autocorrelation indexes". Nonlinear Analysis: Modelling and Control 28 (22 de febrero de 2023): 1–14. http://dx.doi.org/10.15388/namc.2023.28.31434.
Texto completoTesis sobre el tema "Generative classifiers"
Xue, Jinghao. "Aspects of generative and discriminative classifiers". Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Texto completoPh.D. thesis submitted to the Department of Statistics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
ROGER-YUN, Soyoung. "Les expressions nominales à classificateurs et les propositions à cas multiples du coréen : recherches sur leur syntaxe interne et mise en évidence de quelques convergences structurales". Phd thesis, Université de la Sorbonne nouvelle - Paris III, 2002. http://tel.archives-ouvertes.fr/tel-00002834.
Texto completoMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Texto completoGuo, Hong Yu. "Multiple classifier combination through ensembles and data generation". Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26648.
Texto completoKang, Dae-Ki. "Abstraction, aggregation and recursion for generating accurate and simple classifiers". [Ames, Iowa : Iowa State University], 2006.
Buscar texto completoKimura, Takayuki. "RNA-protein structure classifiers incorporated into second-generation statistical potentials". Thesis, San Jose State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10241445.
Texto completoComputational modeling of RNA-protein interactions remains an important endeavor. However, exclusively all-atom approaches that model RNA-protein interactions via molecular dynamics are often problematic in their application. One possible alternative is the implementation of hierarchical approaches, first efficiently exploring configurational space with a coarse-grained representation of the RNA and protein. Subsequently, the lowest energy set of such coarse-grained models can be used as scaffolds for all-atom placements, a standard method in modeling protein 3D-structure. However, the coarse-grained modeling likely will require improved ribonucleotide-amino acid potentials as applied to coarse-grained structures. As a first step we downloaded 1,345 PDB files and clustered them with PISCES to obtain a non-redundant complex data set. The contacts were divided into nine types with DSSR according to the 3D structure of RNA and then 9 sets of potentials were calculated. The potentials were applied to score fifty thousand poses generated by FTDock for twenty-one standard RNA-protein complexes. The results compare favorably to existing RNA-protein potentials. Future research will optimize and test such combined potentials.
Alani, Shayma. "Design of intelligent ensembled classifiers combination methods". Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12793.
Texto completoDING, ZEJIN. "Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/cs_diss/60.
Texto completoSvénsen, Johan F. M. "GTM: the generative topographic mapping". Thesis, Aston University, 1998. http://publications.aston.ac.uk/1245/.
Texto completoPyon, Yoon Soo. "Variant Detection Using Next Generation Sequencing Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1347053645.
Texto completoLibros sobre el tema "Generative classifiers"
Grant, McDuling, ed. Instant leads: Everything you need to know about generating more business. 2a ed. Brisbane, Qld: Action International, 2004.
Buscar texto completoSilent heros of the Cold War declassified: The mysterious military plane crash on a Nevada mountain peak-- and the families who endured an abyss of silence for generation. Las Vegas, Nev: Stephens Press, 2009.
Buscar texto completoAbbas, Atheir I. y Jeffrey A. Lieberman. Pharmacological Treatments for Schizophrenia. Oxford University Press, 2015. http://dx.doi.org/10.1093/med:psych/9780199342211.003.0006.
Texto completoMartín-Vide, Carlos. Formal Grammars and Languages. Editado por Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0008.
Texto completoSolms, Mark. Sleep and dreams. Editado por Sudhansu Chokroverty, Luigi Ferini-Strambi y Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0034.
Texto completoFerguson, Ben y Hillel Steiner. Exploitation. Editado por Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.21.
Texto completoBiddle, Justin B. y Rebecca Kukla. The Geography of Epistemic Risk. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190467715.003.0011.
Texto completoLalvani, Ajit y Katrina Pollock. Defences against infection. Editado por Patrick Davey y David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0303.
Texto completoCaramello, Olivia. Theories of presheaf type: general criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.003.0008.
Texto completoCapítulos de libros sobre el tema "Generative classifiers"
Yang, Xiulong, Hui Ye, Yang Ye, Xiang Li y Shihao Ji. "Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More". En Machine Learning and Knowledge Discovery in Databases. Research Track, 67–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_5.
Texto completoWang, Yaxiao, Yuanzhang Li, Quanxin Zhang, Jingjing Hu y Xiaohui Kuang. "Evading PDF Malware Classifiers with Generative Adversarial Network". En Cyberspace Safety and Security, 374–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37337-5_30.
Texto completoDrummond, Chris. "Discriminative vs. Generative Classifiers for Cost Sensitive Learning". En Advances in Artificial Intelligence, 479–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11766247_41.
Texto completoSantafé, Guzmán, Jose A. Lozano y Pedro Larrañaga. "Discriminative vs. Generative Learning of Bayesian Network Classifiers". En Lecture Notes in Computer Science, 453–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75256-1_41.
Texto completoAntoniou, Antreas, Amos Storkey y Harrison Edwards. "Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks". En Artificial Neural Networks and Machine Learning – ICANN 2018, 594–603. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_58.
Texto completoTran, Quang Duy y Fabio Di Troia. "Word Embeddings for Fake Malware Generation". En Silicon Valley Cybersecurity Conference, 22–37. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_2.
Texto completoAgarwal, Chirag y Anh Nguyen. "Explaining Image Classifiers by Removing Input Features Using Generative Models". En Computer Vision – ACCV 2020, 101–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69544-6_7.
Texto completoPingi, Sharon Torao, Md Abul Bashar y Richi Nayak. "A Comparative Look at the Resilience of Discriminative and Generative Classifiers to Missing Data in Longitudinal Datasets". En Communications in Computer and Information Science, 133–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8746-5_10.
Texto completoMery, Bruno y Christian Retoré. "Classifiers, Sorts, and Base Types in the Montagovian Generative Lexicon and Related Type Theoretical Frameworks for Lexical Compositional Semantics". En Studies in Linguistics and Philosophy, 163–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50422-3_7.
Texto completoZanda, Manuela y Gavin Brown. "A Study of Semi-supervised Generative Ensembles". En Multiple Classifier Systems, 242–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_25.
Texto completoActas de conferencias sobre el tema "Generative classifiers"
van de Ven, Gido M., Zhe Li y Andreas S. Tolias. "Class-Incremental Learning with Generative Classifiers". En 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00400.
Texto completoSmith, Andrew T. y Charles Elkan. "Making generative classifiers robust to selection bias". En the 13th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1281192.1281263.
Texto completoWang, Xin y Siu Ming Yiu. "Classification with Rejection: Scaling Generative Classifiers with Supervised Deep Infomax". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/412.
Texto completoYoshida, Hidefumi, Daichi Suzuo, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Takashi Machida y Yoshiko Kojima. "Pedestrian detection by scene dependent classifiers with generative learning". En 2013 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013. http://dx.doi.org/10.1109/ivs.2013.6629541.
Texto completoShin, Donghwa, Daehee Han y Sunghyon Kyeong. "Performance Enhancement of Malware Classifiers Using Generative Adversarial Networks". En 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020505.
Texto completoDing, Xiaoan, Tianyu Liu, Baobao Chang, Zhifang Sui y Kevin Gimpel. "Discriminatively-Tuned Generative Classifiers for Robust Natural Language Inference". En Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.657.
Texto completoMackowiak, Radek, Lynton Ardizzone, Ullrich Kothe y Carsten Rother. "Generative Classifiers as a Basis for Trustworthy Image Classification". En 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.00299.
Texto completoZhu, Yao, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen y Zhenguo Li. "Towards Understanding the Generative Capability of Adversarially Robust Classifiers". En 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00763.
Texto completoSun, Xin, Xin An, Shuo Xu, Liyuan Hao y Jinghong Li. "Identifying Important Citations by Incorporating Generative Model into Discriminative Classifiers". En IMMS 2020: 2020 3rd International Conference on Information Management and Management Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3416028.3416043.
Texto completoTiwari, Lokender, Anish Madan, Saket Anand y Subhashis Banerjee. "REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions". En 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2022. http://dx.doi.org/10.1109/wacv51458.2022.00388.
Texto completoInformes sobre el tema "Generative classifiers"
Mittal, Vibhu O. y Cecile L. Paris. Generating Examples for Use in Tutorial Explanations: The Use of a Subsumption Based Classifier. Fort Belvoir, VA: Defense Technical Information Center, junio de 1994. http://dx.doi.org/10.21236/ada286028.
Texto completoDzanku, Fred M. y Louis S. Hodey. Achieving Inclusive Oil Palm Commercialisation in Ghana. Institute of Development Studies (IDS), febrero de 2022. http://dx.doi.org/10.19088/apra.2022.007.
Texto completovan den Boogaard, Vanessa y Fabrizio Santoro. Explaining Informal Taxation and Revenue Generation: Evidence from south-central Somalia. Institute of Development Studies, marzo de 2021. http://dx.doi.org/10.19088/ictd.2021.003.
Texto completoRodriguez, Russell y Stanley Freeman. Characterization of fungal symbiotic lifestyle expression in Colletotrichum and generating non-pathogenic mutants that confer disease resistance, drought tolerance, and growth enhancement to plant hosts. United States Department of Agriculture, febrero de 2005. http://dx.doi.org/10.32747/2005.7587215.bard.
Texto completo