Siga este enlace para ver otros tipos de publicaciones sobre el tema: Generalized Nash equilibrium problems.

Artículos de revistas sobre el tema "Generalized Nash equilibrium problems"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generalized Nash equilibrium problems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Facchinei, Francisco y Christian Kanzow. "Generalized Nash Equilibrium Problems". Annals of Operations Research 175, n.º 1 (1 de noviembre de 2009): 177–211. http://dx.doi.org/10.1007/s10479-009-0653-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Facchinei, Francisco y Christian Kanzow. "Generalized Nash equilibrium problems". 4OR 5, n.º 3 (13 de septiembre de 2007): 173–210. http://dx.doi.org/10.1007/s10288-007-0054-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nasri, Mostafa y Wilfredo Sosa. "Equilibrium problems and generalized Nash games". Optimization 60, n.º 8-9 (agosto de 2011): 1161–70. http://dx.doi.org/10.1080/02331934.2010.527341.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Singh, Shipra, Aviv Gibali y Simeon Reich. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications". Mathematics 9, n.º 14 (14 de julio de 2021): 1658. http://dx.doi.org/10.3390/math9141658.

Texto completo
Resumen
We propose a multi-time generalized Nash equilibrium problem and prove its equivalence with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria. Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be applied to solving traffic network problems, the aim of which is to minimize the traffic cost of each route and to solving a river basin pollution problem. Moreover, we also study the proposed multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically illustrate our theoretical results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Facchinei, Francisco, Andreas Fischer y Veronica Piccialli. "Generalized Nash equilibrium problems and Newton methods". Mathematical Programming 117, n.º 1-2 (19 de julio de 2007): 163–94. http://dx.doi.org/10.1007/s10107-007-0160-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Dreves, Axel y Nathan Sudermann-Merx. "Solving linear generalized Nash equilibrium problems numerically". Optimization Methods and Software 31, n.º 5 (14 de abril de 2016): 1036–63. http://dx.doi.org/10.1080/10556788.2016.1165676.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

YANG, ZHE. "Existence of solutions for a system of quasi-variational relation problems and some applications". Carpathian Journal of Mathematics 31, n.º 1 (2015): 135–42. http://dx.doi.org/10.37193/cjm.2015.01.16.

Texto completo
Resumen
In this paper, we study the existence of solutions for a new class of systems of quasi-variational relation problems on different domains. As applications, we obtain existence theorems of solutions for systems of quasi-variational inclusions, systems of quasi-equilibrium problems, systems of generalized maximal element problems, systems of generalized KKM problems and systems of generalized quasi-Nash equilibrium problems on different domains. The results of this paper improve and generalize several known results on variational relation problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Dreves, Axel. "An algorithm for equilibrium selection in generalized Nash equilibrium problems". Computational Optimization and Applications 73, n.º 3 (7 de marzo de 2019): 821–37. http://dx.doi.org/10.1007/s10589-019-00086-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fischer, Andreas, Markus Herrich y Klaus Schönefeld. "GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES". Pesquisa Operacional 34, n.º 3 (diciembre de 2014): 521–58. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0521.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yuan, Yanhong, Hongwei Zhang y Liwei Zhang. "A penalty method for generalized Nash equilibrium problems". Journal of Industrial & Management Optimization 8, n.º 1 (2012): 51–65. http://dx.doi.org/10.3934/jimo.2012.8.51.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Yu, Chung-Kai, Mihaela van der Schaar y Ali H. Sayed. "Distributed Learning for Stochastic Generalized Nash Equilibrium Problems". IEEE Transactions on Signal Processing 65, n.º 15 (1 de agosto de 2017): 3893–908. http://dx.doi.org/10.1109/tsp.2017.2695451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Panicucci, Barbara, Massimo Pappalardo y Mauro Passacantando. "On solving generalized Nash equilibrium problems via optimization". Optimization Letters 3, n.º 3 (24 de marzo de 2009): 419–35. http://dx.doi.org/10.1007/s11590-009-0122-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Shan, Shu-qiang, Yu Han y Nan-jing Huang. "Upper Semicontinuity of Solution Mappings to Parametric Generalized Vector Quasiequilibrium Problems". Journal of Function Spaces 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/764187.

Texto completo
Resumen
We establish the upper semicontinuity of solution mappings for a class of parametric generalized vector quasiequilibrium problems. As applications, we obtain the upper semicontinuity of solution mappings to several problems, such as parametric optimization problem, parametric saddle point problem, parametric Nash equilibria problem, parametric variational inequality, and parametric equilibrium problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Couellan, Nicolas. "A note on supervised classification and Nash-equilibrium problems". RAIRO - Operations Research 51, n.º 2 (27 de febrero de 2017): 329–41. http://dx.doi.org/10.1051/ro/2016024.

Texto completo
Resumen
In this note, we investigate connections between supervised classification and (Generalized) Nash equilibrium problems (NEP & GNEP). For the specific case of support vector machines (SVM), we exploit the geometric properties of class separation in the dual space to formulate a non-cooperative game. NEP and Generalized NEP formulations are proposed for both binary and multi-class SVM problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Hou, Jian y Liwei Zhang. "A barrier function method for generalized Nash equilibrium problems". Journal of Industrial & Management Optimization 10, n.º 4 (2014): 1091–108. http://dx.doi.org/10.3934/jimo.2014.10.1091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Dreves, Axel. "Computing all solutions of linear generalized Nash equilibrium problems". Mathematical Methods of Operations Research 85, n.º 2 (7 de octubre de 2016): 207–21. http://dx.doi.org/10.1007/s00186-016-0562-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

e Oliveira, Hime Aguiar y Antonio Petraglia. "Solving generalized Nash equilibrium problems through stochastic global optimization". Applied Soft Computing 39 (febrero de 2016): 21–35. http://dx.doi.org/10.1016/j.asoc.2015.10.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Harms, Nadja, Christian Kanzow y Oliver Stein. "On differentiability properties of player convex generalized Nash equilibrium problems". Optimization 64, n.º 2 (23 de enero de 2013): 365–88. http://dx.doi.org/10.1080/02331934.2012.752822.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Facchinei, Francisco y Christian Kanzow. "Penalty Methods for the Solution of Generalized Nash Equilibrium Problems". SIAM Journal on Optimization 20, n.º 5 (enero de 2010): 2228–53. http://dx.doi.org/10.1137/090749499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Facchinei, Francisco y Lorenzo Lampariello. "Partial penalization for the solution of generalized Nash equilibrium problems". Journal of Global Optimization 50, n.º 1 (11 de julio de 2010): 39–57. http://dx.doi.org/10.1007/s10898-010-9579-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Georgiev, P. G. y P. M. Pardalos. "Generalized Nash equilibrium problems for lower semi-continuous strategy maps". Journal of Global Optimization 50, n.º 1 (11 de marzo de 2011): 119–25. http://dx.doi.org/10.1007/s10898-011-9670-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Dreves, Axel, Christian Kanzow y Oliver Stein. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems". Journal of Global Optimization 53, n.º 4 (22 de mayo de 2011): 587–614. http://dx.doi.org/10.1007/s10898-011-9727-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Altangerel, L. y G. Battur. "Perturbation approach to generalized Nash equilibrium problems with shared constraints". Optimization Letters 6, n.º 7 (27 de junio de 2012): 1379–91. http://dx.doi.org/10.1007/s11590-012-0510-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Aussel, D., R. Correa y M. Marechal. "Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems". Journal of Optimization Theory and Applications 151, n.º 3 (9 de septiembre de 2011): 474–88. http://dx.doi.org/10.1007/s10957-011-9898-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Dreves, Axel. "How to Select a Solution in Generalized Nash Equilibrium Problems". Journal of Optimization Theory and Applications 178, n.º 3 (12 de junio de 2018): 973–97. http://dx.doi.org/10.1007/s10957-018-1327-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Börgens, Eike y Christian Kanzow. "ADMM-Type Methods for Generalized Nash Equilibrium Problems in Hilbert Spaces". SIAM Journal on Optimization 31, n.º 1 (enero de 2021): 377–403. http://dx.doi.org/10.1137/19m1284336.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Martyr, Randall y John Moriarty. "Nonzero-Sum Games of Optimal Stopping and Generalized Nash Equilibrium Problems". SIAM Journal on Control and Optimization 59, n.º 2 (enero de 2021): 1443–65. http://dx.doi.org/10.1137/18m119803x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Kanzow, Christian y Daniel Steck. "Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems". SIAM Journal on Optimization 26, n.º 4 (enero de 2016): 2034–58. http://dx.doi.org/10.1137/16m1068256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ye, Minglu. "A half-space projection method for solving generalized Nash equilibrium problems". Optimization 66, n.º 7 (22 de mayo de 2017): 1119–34. http://dx.doi.org/10.1080/02331934.2017.1326045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

von Heusinger, A. y C. Kanzow. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search". Journal of Optimization Theory and Applications 143, n.º 1 (22 de abril de 2009): 159–83. http://dx.doi.org/10.1007/s10957-009-9553-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Guo, Lei. "Mathematical programs with multiobjective generalized Nash equilibrium problems in the constraints". Operations Research Letters 49, n.º 1 (enero de 2021): 11–16. http://dx.doi.org/10.1016/j.orl.2020.11.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Han, Deren, Hongchao Zhang, Gang Qian y Lingling Xu. "An improved two-step method for solving generalized Nash equilibrium problems". European Journal of Operational Research 216, n.º 3 (febrero de 2012): 613–23. http://dx.doi.org/10.1016/j.ejor.2011.08.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Dreves, Axel. "A best-response approach for equilibrium selection in two-player generalized Nash equilibrium problems". Optimization 68, n.º 12 (31 de julio de 2019): 2269–95. http://dx.doi.org/10.1080/02331934.2019.1646743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Li, Xingchang. "Existence of Generalized Nash Equilibrium in n-Person Noncooperative Games under Incomplete Preference". Journal of Function Spaces 2018 (9 de octubre de 2018): 1–5. http://dx.doi.org/10.1155/2018/3737253.

Texto completo
Resumen
To prove the existence of Nash equilibrium by traditional ways, a common condition that the preference of players must be complete has to be considered. This paper presents a new method to improve it. Based on the incomplete preference corresponding to equivalence class set being a partial order set, we translate the incomplete preference problems into the partial order problems. Using the famous Zorn lemma, we get the existence theorems of fixed point for noncontinuous operators in incomplete preference sets. These new fixed point theorems provide a new way to break through the limitation. Finally, the existence of generalized Nash equilibrium is strictly proved in the n-person noncooperative games under incomplete preference.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Huang, Young-Ye y Chung-Chien Hong. "A Unified Iterative Treatment for Solutions of Problems of Split Feasibility and Equilibrium in Hilbert Spaces". Abstract and Applied Analysis 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/613928.

Texto completo
Resumen
We at first raise the so called split feasibility fixed point problem which covers the problems of split feasibility, convex feasibility, and equilibrium as special cases and then give two types of algorithms for finding solutions of this problem and establish the corresponding strong convergence theorems for the sequences generated by our algorithms. As a consequence, we apply them to study the split feasibility problem, the zero point problem of maximal monotone operators, and the equilibrium problem and to show that the unique minimum norm solutions of these problems can be obtained through our algorithms. Since the variational inequalities, convex differentiable optimization, and Nash equilibria in noncooperative games can be formulated as equilibrium problems, each type of our algorithms can be considered as a generalized methodology for solving the aforementioned problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Dreves, Axel, Francisco Facchinei, Christian Kanzow y Simone Sagratella. "On the solution of the KKT conditions of generalized Nash equilibrium problems". SIAM Journal on Optimization 21, n.º 3 (julio de 2011): 1082–108. http://dx.doi.org/10.1137/100817000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

WEI, YingYing, LingLing XU y DeRen HAN. "A decomposition method based on penalization for solving generalized Nash equilibrium problems". SCIENTIA SINICA Mathematica 44, n.º 3 (1 de febrero de 2014): 295–305. http://dx.doi.org/10.1360/012012-563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kanzow, C., V. Karl, D. Steck y D. Wachsmuth. "The Multiplier-Penalty Method for Generalized Nash Equilibrium Problems in Banach Spaces". SIAM Journal on Optimization 29, n.º 1 (enero de 2019): 767–93. http://dx.doi.org/10.1137/17m114114x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Dreves, Axel y Matthias Gerdts. "A generalized Nash equilibrium approach for optimal control problems of autonomous cars". Optimal Control Applications and Methods 39, n.º 1 (20 de julio de 2017): 326–42. http://dx.doi.org/10.1002/oca.2348.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Nabetani, Koichi, Paul Tseng y Masao Fukushima. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints". Computational Optimization and Applications 48, n.º 3 (19 de mayo de 2009): 423–52. http://dx.doi.org/10.1007/s10589-009-9256-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Izmailov, Alexey F. y Mikhail V. Solodov. "On error bounds and Newton-type methods for generalized Nash equilibrium problems". Computational Optimization and Applications 59, n.º 1-2 (10 de septiembre de 2013): 201–18. http://dx.doi.org/10.1007/s10589-013-9595-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Dreves, Axel. "Improved error bound and a hybrid method for generalized Nash equilibrium problems". Computational Optimization and Applications 65, n.º 2 (12 de septiembre de 2014): 431–48. http://dx.doi.org/10.1007/s10589-014-9699-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Li, Xun, Jingtao Shi y Jiongmin Yong. "Mean-field linear-quadratic stochastic differential games in an infinite horizon". ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 81. http://dx.doi.org/10.1051/cocv/2021078.

Texto completo
Resumen
This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lu, Haishu, Kai Zhang y Rong Li. "Collectively fixed point theorems in noncompact abstract convex spaces with applications". AIMS Mathematics 6, n.º 11 (2021): 12422–59. http://dx.doi.org/10.3934/math.2021718.

Texto completo
Resumen
<abstract><p>In this paper, by using the KKM theory and the properties of $ \Gamma $-convexity and $ {\frak{RC}} $-mapping, we investigate the existence of collectively fixed points for a family with a finite number of set-valued mappings on the product space of noncompact abstract convex spaces. Consequently, as applications, some existence theorems of generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some nonempty intersection theorems with applications to the Fan analytic alternative formulation and the existence of Nash equilibria, and some existence theorems of solutions for generalized weak implicit inclusion problems in noncompact abstract convex spaces are given. The results obtained in this paper extend and generalize many corresponding results of the existing literature.</p></abstract>
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Sagratella, Simone. "On generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables". Optimization 68, n.º 1 (19 de noviembre de 2018): 197–226. http://dx.doi.org/10.1080/02331934.2018.1545125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chen, Yi Zeng y Mei Ju Luo. "Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems". Journal of Industrial and Management Optimization 12, n.º 1 (abril de 2015): 1–15. http://dx.doi.org/10.3934/jimo.2016.12.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Li, Pei-Yu. "Sample average approximation method for a class of stochastic generalized Nash equilibrium problems". Journal of Computational and Applied Mathematics 261 (mayo de 2014): 387–93. http://dx.doi.org/10.1016/j.cam.2013.11.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Facchinei, Francisco y Simone Sagratella. "On the computation of all solutions of jointly convex generalized Nash equilibrium problems". Optimization Letters 5, n.º 3 (16 de julio de 2010): 531–47. http://dx.doi.org/10.1007/s11590-010-0218-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dreves, Axel y Christian Kanzow. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems". Computational Optimization and Applications 50, n.º 1 (5 de enero de 2010): 23–48. http://dx.doi.org/10.1007/s10589-009-9314-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Krawczyk, Jacek B. y Mabel Tidball. "Economic Problems with Constraints: How Efficiency Relates to Equilibrium". International Game Theory Review 18, n.º 04 (26 de octubre de 2016): 1650011. http://dx.doi.org/10.1142/s0219198916500110.

Texto completo
Resumen
We consider situations, in which socially important goods (like transportation capacity or hospital beds) are supplied by independent economic agents. There is also a regulator that believes that constraining the goods delivery is desirable. The regulator can compute a constrained Pareto-efficient solution to establish optimal output levels for each agent. We suggest that a coupled-constraint equilibrium (also called a “generalized” Nash or “normalized” equilibrium à la Rosen) may be more relevant for market economies than a Pareto-efficient solution. We examine under which conditions the latter can equal the former. We illustrate our findings using a coordination problem, in which the agents’ outputs depend on externalities. It becomes evident that the correspondence between an efficient and equilibrium solutions cannot be complete if the agents’ activities generate both negative and positive externalities at the same time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía