Siga este enlace para ver otros tipos de publicaciones sobre el tema: Generalized Nash equilibrium problems.

Artículos de revistas sobre el tema "Generalized Nash equilibrium problems"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generalized Nash equilibrium problems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Facchinei, Francisco, and Christian Kanzow. "Generalized Nash Equilibrium Problems." Annals of Operations Research 175, no. 1 (2009): 177–211. http://dx.doi.org/10.1007/s10479-009-0653-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Facchinei, Francisco, and Christian Kanzow. "Generalized Nash equilibrium problems." 4OR 5, no. 3 (2007): 173–210. http://dx.doi.org/10.1007/s10288-007-0054-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nie, Jiawang, Xindong Tang, and Suhan Zhong. "Rational Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 33, no. 3 (2023): 1587–620. http://dx.doi.org/10.1137/21m1456285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pan, Chengqing, and Haishu Lu. "On the existence of solutions for systems of generalized vector quasi-variational equilibrium problems in abstract convex spaces with applications." AIMS Mathematics 9, no. 11 (2024): 29942–73. http://dx.doi.org/10.3934/math.20241447.

Texto completo
Resumen
<p>In this paper, we first introduced systems of generalized vector quasi-variational equilibrium problems as well as systems of vector quasi-variational equilibrium problems as their special cases in abstract convex spaces. Next, we established some existence theorems of solutions for systems of generalized vector quasi-variational equilibrium problems and systems of vector quasi-variational equilibrium problems in non-compact abstract convex spaces. Furthermore, we applied the obtained existence theorem of solutions for systems of vector quasi-variational equilibrium problems to solve
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nasri, Mostafa, and Wilfredo Sosa. "Equilibrium problems and generalized Nash games." Optimization 60, no. 8-9 (2011): 1161–70. http://dx.doi.org/10.1080/02331934.2010.527341.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Singh, Shipra, Aviv Gibali, and Simeon Reich. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications." Mathematics 9, no. 14 (2021): 1658. http://dx.doi.org/10.3390/math9141658.

Texto completo
Resumen
We propose a multi-time generalized Nash equilibrium problem and prove its equivalence with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria. Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be applied to solving traffic network problems, the aim of which is to minimize the traffic cost of each route and to solving a river basin pollution problem. Moreover, we also study the proposed multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically illustrate our theoretical r
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

YANG, ZHE. "Existence of solutions for a system of quasi-variational relation problems and some applications." Carpathian Journal of Mathematics 31, no. 1 (2015): 135–42. http://dx.doi.org/10.37193/cjm.2015.01.16.

Texto completo
Resumen
In this paper, we study the existence of solutions for a new class of systems of quasi-variational relation problems on different domains. As applications, we obtain existence theorems of solutions for systems of quasi-variational inclusions, systems of quasi-equilibrium problems, systems of generalized maximal element problems, systems of generalized KKM problems and systems of generalized quasi-Nash equilibrium problems on different domains. The results of this paper improve and generalize several known results on variational relation problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Facchinei, Francisco, Andreas Fischer, and Veronica Piccialli. "Generalized Nash equilibrium problems and Newton methods." Mathematical Programming 117, no. 1-2 (2007): 163–94. http://dx.doi.org/10.1007/s10107-007-0160-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dreves, Axel, and Nathan Sudermann-Merx. "Solving linear generalized Nash equilibrium problems numerically." Optimization Methods and Software 31, no. 5 (2016): 1036–63. http://dx.doi.org/10.1080/10556788.2016.1165676.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dreves, Axel. "An algorithm for equilibrium selection in generalized Nash equilibrium problems." Computational Optimization and Applications 73, no. 3 (2019): 821–37. http://dx.doi.org/10.1007/s10589-019-00086-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fischer, Andreas, Markus Herrich, and Klaus Schönefeld. "GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES." Pesquisa Operacional 34, no. 3 (2014): 521–58. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0521.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Yuan, Yanhong, Hongwei Zhang, and Liwei Zhang. "A penalty method for generalized Nash equilibrium problems." Journal of Industrial & Management Optimization 8, no. 1 (2012): 51–65. http://dx.doi.org/10.3934/jimo.2012.8.51.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Yu, Chung-Kai, Mihaela van der Schaar, and Ali H. Sayed. "Distributed Learning for Stochastic Generalized Nash Equilibrium Problems." IEEE Transactions on Signal Processing 65, no. 15 (2017): 3893–908. http://dx.doi.org/10.1109/tsp.2017.2695451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Panicucci, Barbara, Massimo Pappalardo, and Mauro Passacantando. "On solving generalized Nash equilibrium problems via optimization." Optimization Letters 3, no. 3 (2009): 419–35. http://dx.doi.org/10.1007/s11590-009-0122-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Shan, Shu-qiang, Yu Han, and Nan-jing Huang. "Upper Semicontinuity of Solution Mappings to Parametric Generalized Vector Quasiequilibrium Problems." Journal of Function Spaces 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/764187.

Texto completo
Resumen
We establish the upper semicontinuity of solution mappings for a class of parametric generalized vector quasiequilibrium problems. As applications, we obtain the upper semicontinuity of solution mappings to several problems, such as parametric optimization problem, parametric saddle point problem, parametric Nash equilibria problem, parametric variational inequality, and parametric equilibrium problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Couellan, Nicolas. "A note on supervised classification and Nash-equilibrium problems." RAIRO - Operations Research 51, no. 2 (2017): 329–41. http://dx.doi.org/10.1051/ro/2016024.

Texto completo
Resumen
In this note, we investigate connections between supervised classification and (Generalized) Nash equilibrium problems (NEP & GNEP). For the specific case of support vector machines (SVM), we exploit the geometric properties of class separation in the dual space to formulate a non-cooperative game. NEP and Generalized NEP formulations are proposed for both binary and multi-class SVM problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Hou, Jian, and Liwei Zhang. "A barrier function method for generalized Nash equilibrium problems." Journal of Industrial & Management Optimization 10, no. 4 (2014): 1091–108. http://dx.doi.org/10.3934/jimo.2014.10.1091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dreves, Axel. "Computing all solutions of linear generalized Nash equilibrium problems." Mathematical Methods of Operations Research 85, no. 2 (2016): 207–21. http://dx.doi.org/10.1007/s00186-016-0562-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

e Oliveira, Hime Aguiar, and Antonio Petraglia. "Solving generalized Nash equilibrium problems through stochastic global optimization." Applied Soft Computing 39 (February 2016): 21–35. http://dx.doi.org/10.1016/j.asoc.2015.10.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Harms, Nadja, Christian Kanzow, and Oliver Stein. "On differentiability properties of player convex generalized Nash equilibrium problems." Optimization 64, no. 2 (2013): 365–88. http://dx.doi.org/10.1080/02331934.2012.752822.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Facchinei, Francisco, and Christian Kanzow. "Penalty Methods for the Solution of Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 20, no. 5 (2010): 2228–53. http://dx.doi.org/10.1137/090749499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Facchinei, Francisco, and Lorenzo Lampariello. "Partial penalization for the solution of generalized Nash equilibrium problems." Journal of Global Optimization 50, no. 1 (2010): 39–57. http://dx.doi.org/10.1007/s10898-010-9579-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Georgiev, P. G., and P. M. Pardalos. "Generalized Nash equilibrium problems for lower semi-continuous strategy maps." Journal of Global Optimization 50, no. 1 (2011): 119–25. http://dx.doi.org/10.1007/s10898-011-9670-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dreves, Axel, Christian Kanzow, and Oliver Stein. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems." Journal of Global Optimization 53, no. 4 (2011): 587–614. http://dx.doi.org/10.1007/s10898-011-9727-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Altangerel, L., and G. Battur. "Perturbation approach to generalized Nash equilibrium problems with shared constraints." Optimization Letters 6, no. 7 (2012): 1379–91. http://dx.doi.org/10.1007/s11590-012-0510-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Aussel, D., R. Correa, and M. Marechal. "Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems." Journal of Optimization Theory and Applications 151, no. 3 (2011): 474–88. http://dx.doi.org/10.1007/s10957-011-9898-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Dreves, Axel. "How to Select a Solution in Generalized Nash Equilibrium Problems." Journal of Optimization Theory and Applications 178, no. 3 (2018): 973–97. http://dx.doi.org/10.1007/s10957-018-1327-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lisboa, Adriano C., Fellipe F. G. Santos, Douglas A. G. Vieira, Rodney R. Saldanha, and Felipe A. C. Pereira. "An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games." Energies 18, no. 3 (2025): 727. https://doi.org/10.3390/en18030727.

Texto completo
Resumen
This paper introduces an enhanced algorithm for computing generalized Nash equilibria for multiple player nonlinear games, which degenerates in a gradient algorithm for single player games (i.e., optimization problems) or potential games (i.e., equivalent to minimizing the respective potential function), based on the Rosen gradient algorithm. Analytical examples show that it has similar theoretical guarantees of finding a generalized Nash equilibrium when compared to the relaxation algorithm, while numerical examples show that it is faster. Furthermore, the proposed algorithm is as fast as, bu
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

CHAIPUNYA, PARIN, NANTAPORN CHUENSUPANTHARAT, and PRINTAPORN SANGUANSUTTIGUL. "Graphical Ekeland's variational principle with a generalized $w$-distance and a new approach to quasi-equilibrium problems." Carpathian Journal of Mathematics 39, no. 1 (2022): 95–107. http://dx.doi.org/10.37193/cjm.2023.01.06.

Texto completo
Resumen
In this paper, we introduce the generalized Ekeland's variational principle in several forms. The general setting of our results includes a graphical metric structure and also employs a generalized $w$-distance. We then applied the proposed variational principles to obtain existence theorems for a class of quasi-equilibrium problems whose constraint maps are induced from the graphical structure. The conditions used in our existence results are based on a very general concept called a convergence class. Finally, we deduce the existence of a generalized Nash equilibrium via its quasi-equilibrium
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Li, Xingchang. "Existence of Generalized Nash Equilibrium in n-Person Noncooperative Games under Incomplete Preference." Journal of Function Spaces 2018 (October 9, 2018): 1–5. http://dx.doi.org/10.1155/2018/3737253.

Texto completo
Resumen
To prove the existence of Nash equilibrium by traditional ways, a common condition that the preference of players must be complete has to be considered. This paper presents a new method to improve it. Based on the incomplete preference corresponding to equivalence class set being a partial order set, we translate the incomplete preference problems into the partial order problems. Using the famous Zorn lemma, we get the existence theorems of fixed point for noncontinuous operators in incomplete preference sets. These new fixed point theorems provide a new way to break through the limitation. Fi
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Huang, Young-Ye, and Chung-Chien Hong. "A Unified Iterative Treatment for Solutions of Problems of Split Feasibility and Equilibrium in Hilbert Spaces." Abstract and Applied Analysis 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/613928.

Texto completo
Resumen
We at first raise the so called split feasibility fixed point problem which covers the problems of split feasibility, convex feasibility, and equilibrium as special cases and then give two types of algorithms for finding solutions of this problem and establish the corresponding strong convergence theorems for the sequences generated by our algorithms. As a consequence, we apply them to study the split feasibility problem, the zero point problem of maximal monotone operators, and the equilibrium problem and to show that the unique minimum norm solutions of these problems can be obtained through
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Börgens, Eike, and Christian Kanzow. "ADMM-Type Methods for Generalized Nash Equilibrium Problems in Hilbert Spaces." SIAM Journal on Optimization 31, no. 1 (2021): 377–403. http://dx.doi.org/10.1137/19m1284336.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Martyr, Randall, and John Moriarty. "Nonzero-Sum Games of Optimal Stopping and Generalized Nash Equilibrium Problems." SIAM Journal on Control and Optimization 59, no. 2 (2021): 1443–65. http://dx.doi.org/10.1137/18m119803x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kanzow, Christian, and Daniel Steck. "Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 26, no. 4 (2016): 2034–58. http://dx.doi.org/10.1137/16m1068256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ye, Minglu. "A half-space projection method for solving generalized Nash equilibrium problems." Optimization 66, no. 7 (2017): 1119–34. http://dx.doi.org/10.1080/02331934.2017.1326045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

von Heusinger, A., and C. Kanzow. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search." Journal of Optimization Theory and Applications 143, no. 1 (2009): 159–83. http://dx.doi.org/10.1007/s10957-009-9553-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Guo, Lei. "Mathematical programs with multiobjective generalized Nash equilibrium problems in the constraints." Operations Research Letters 49, no. 1 (2021): 11–16. http://dx.doi.org/10.1016/j.orl.2020.11.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Han, Deren, Hongchao Zhang, Gang Qian, and Lingling Xu. "An improved two-step method for solving generalized Nash equilibrium problems." European Journal of Operational Research 216, no. 3 (2012): 613–23. http://dx.doi.org/10.1016/j.ejor.2011.08.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Lampariello, Lorenzo, Simone Sagratella, and Valerio Giuseppe Sasso. "Addressing Hierarchical Jointly Convex Generalized Nash Equilibrium Problems with Nonsmooth Payoffs." SIAM Journal on Optimization 35, no. 1 (2025): 445–75. https://doi.org/10.1137/23m1574026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Dreves, Axel. "A best-response approach for equilibrium selection in two-player generalized Nash equilibrium problems." Optimization 68, no. 12 (2019): 2269–95. http://dx.doi.org/10.1080/02331934.2019.1646743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Li, Xun, Jingtao Shi, and Jiongmin Yong. "Mean-field linear-quadratic stochastic differential games in an infinite horizon." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 81. http://dx.doi.org/10.1051/cocv/2021078.

Texto completo
Resumen
This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The exis
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Passacantando, Mauro, and Fabio Raciti. "Lipschitz Continuity Results for a Class of Parametric Variational Inequalities and Applications to Network Games." Algorithms 16, no. 10 (2023): 458. http://dx.doi.org/10.3390/a16100458.

Texto completo
Resumen
We consider a class of finite-dimensional variational inequalities where both the operator and the constraint set can depend on a parameter. Under suitable assumptions, we provide new estimates for the Lipschitz constant of the solution, which considerably improve previous ones. We then consider the problem of computing the mean value of the solution with respect to the parameter and, to this end, adapt an algorithm devised to approximate a Lipschitz function whose analytic expression is unknown, but can be evaluated in arbitrarily chosen sample points. Finally, we apply our results to a class
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Lu, Haishu, Kai Zhang, and Rong Li. "Collectively fixed point theorems in noncompact abstract convex spaces with applications." AIMS Mathematics 6, no. 11 (2021): 12422–59. http://dx.doi.org/10.3934/math.2021718.

Texto completo
Resumen
<abstract><p>In this paper, by using the KKM theory and the properties of $ \Gamma $-convexity and $ {\frak{RC}} $-mapping, we investigate the existence of collectively fixed points for a family with a finite number of set-valued mappings on the product space of noncompact abstract convex spaces. Consequently, as applications, some existence theorems of generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some nonempty intersection theorems with applications to the Fan analytic alternative formulation and the existence of
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Dreves, Axel, Francisco Facchinei, Christian Kanzow, and Simone Sagratella. "On the solution of the KKT conditions of generalized Nash equilibrium problems." SIAM Journal on Optimization 21, no. 3 (2011): 1082–108. http://dx.doi.org/10.1137/100817000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

WEI, YingYing, LingLing XU, and DeRen HAN. "A decomposition method based on penalization for solving generalized Nash equilibrium problems." SCIENTIA SINICA Mathematica 44, no. 3 (2014): 295–305. http://dx.doi.org/10.1360/012012-563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kanzow, C., V. Karl, D. Steck, and D. Wachsmuth. "The Multiplier-Penalty Method for Generalized Nash Equilibrium Problems in Banach Spaces." SIAM Journal on Optimization 29, no. 1 (2019): 767–93. http://dx.doi.org/10.1137/17m114114x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Nabetani, Koichi, Paul Tseng, and Masao Fukushima. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints." Computational Optimization and Applications 48, no. 3 (2009): 423–52. http://dx.doi.org/10.1007/s10589-009-9256-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Izmailov, Alexey F., and Mikhail V. Solodov. "On error bounds and Newton-type methods for generalized Nash equilibrium problems." Computational Optimization and Applications 59, no. 1-2 (2013): 201–18. http://dx.doi.org/10.1007/s10589-013-9595-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dreves, Axel. "Improved error bound and a hybrid method for generalized Nash equilibrium problems." Computational Optimization and Applications 65, no. 2 (2014): 431–48. http://dx.doi.org/10.1007/s10589-014-9699-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dreves, Axel, and Matthias Gerdts. "A generalized Nash equilibrium approach for optimal control problems of autonomous cars." Optimal Control Applications and Methods 39, no. 1 (2017): 326–42. http://dx.doi.org/10.1002/oca.2348.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!