Literatura académica sobre el tema "Generalized cusps"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Generalized cusps".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Generalized cusps"
Cervantes, Aldrin y Miguel A. García-Aspeitia. "Predicting cusps or kinks in Nambu–Goto dynamics". Modern Physics Letters A 30, n.º 39 (7 de diciembre de 2015): 1550210. http://dx.doi.org/10.1142/s0217732315502107.
Texto completoAcosta, Gabriel y Ignacio Ojea. "Korn's inequalities for generalized external cusps". Mathematical Methods in the Applied Sciences 39, n.º 17 (21 de mayo de 2014): 4935–50. http://dx.doi.org/10.1002/mma.3170.
Texto completoBallas, Samuel A., Daryl Cooper y Arielle Leitner. "Generalized cusps in real projective manifolds: classification". Journal of Topology 13, n.º 4 (21 de julio de 2020): 1455–96. http://dx.doi.org/10.1112/topo.12161.
Texto completoBallas, Samuel, Daryl Cooper y Arielle Leitner. "The moduli space of marked generalized cusps in real projective manifolds". Conformal Geometry and Dynamics of the American Mathematical Society 26, n.º 7 (17 de agosto de 2022): 111–64. http://dx.doi.org/10.1090/ecgd/367.
Texto completoOGATA, Shoetsu. "Generalized Hirzebruch's conjecture for Hilbert-Picard modular cusps". Japanese journal of mathematics. New series 22, n.º 2 (1996): 385–410. http://dx.doi.org/10.4099/math1924.22.385.
Texto completoPonce, Jean y David Chelberg. "Finding the limbs and cusps of generalized cylinders". International Journal of Computer Vision 1, n.º 3 (octubre de 1988): 195–210. http://dx.doi.org/10.1007/bf00127820.
Texto completoJordan, Bruce W., Kenneth A. Ribet y Anthony J. Scholl. "Modular curves and Néron models of generalized Jacobians". Compositio Mathematica 160, n.º 5 (26 de marzo de 2024): 945–81. http://dx.doi.org/10.1112/s0010437x23007662.
Texto completoMcREYNOLDS, D. B. "Cusps of Hilbert modular varieties". Mathematical Proceedings of the Cambridge Philosophical Society 144, n.º 3 (mayo de 2008): 749–59. http://dx.doi.org/10.1017/s0305004107001004.
Texto completoDe los Ríos, Patricio, Laksmanan Kanagu, Chokkalingam Lathasumathi y Chelladurai Stella. "Radular morphology by using SEM in Pugilina cochlidium (Gastropoda: Melongenidae) populations, from Thondi coast-Palk Bay in Tamil Nadu-South East coast of India". Brazilian Journal of Biology 80, n.º 4 (diciembre de 2020): 783–89. http://dx.doi.org/10.1590/1519-6984.220076.
Texto completoBRUINIER, JAN HENDRIK y MARKUS SCHWAGENSCHEIDT. "A CONVERSE THEOREM FOR BORCHERDS PRODUCTS ON". Nagoya Mathematical Journal 240 (1 de marzo de 2019): 237–56. http://dx.doi.org/10.1017/nmj.2019.3.
Texto completoTesis sobre el tema "Generalized cusps"
Vaillant, Boris. "Index- and spectral theory for manifolds with generalized fibred cusps". Bonn : Mathematisches Institut der Universität, 2001. http://catalog.hathitrust.org/api/volumes/oclc/51691852.html.
Texto completoRoidos, Nikolaos. "Spectral theory of the Laplace operator on manifolds with generalized cusps". Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6054.
Texto completoFléchelles, Balthazar. "Geometric finiteness in convex projective geometry". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Texto completoThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Scholz, Markus. "Über das Verhalten von Kapillarflächen in Spitzen". Doctoral thesis, Universitätsbibliothek Leipzig, 2004. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-37249.
Texto completoThe present paper is based on mathematical aspects of the capillary surface problem. It is divided into two parts. In the first part we consider the classical capillary surface problem, for which smooth solutions exist. These solutions are unbounded if the domain of definition contains cusps. We prove a large variety of asymptotic formulas. The second part is concerned with generalized solutions of the general capillary problem, for which there is not always a smooth solution. We prove existence of generalized solutions under very weak preconditions. We can construct some generalized solutions for zero-gravity and constant wetting-behaviour explicitly. These solutions have a very restricted geometry and could be of interest for the understanding of water lift in trees
TOCCHET, MICHELE. "Generalized Mom-structures and volume estimates for hyperbolic 3-manifolds with geodesic boundary and toric cusps". Doctoral thesis, 2012. http://hdl.handle.net/11573/918614.
Texto completoScholz, Markus. "Über das Verhalten von Kapillarflächen in Spitzen". 2002. https://ul.qucosa.de/id/qucosa%3A10947.
Texto completoThe present paper is based on mathematical aspects of the capillary surface problem. It is divided into two parts. In the first part we consider the classical capillary surface problem, for which smooth solutions exist. These solutions are unbounded if the domain of definition contains cusps. We prove a large variety of asymptotic formulas. The second part is concerned with generalized solutions of the general capillary problem, for which there is not always a smooth solution. We prove existence of generalized solutions under very weak preconditions. We can construct some generalized solutions for zero-gravity and constant wetting-behaviour explicitly. These solutions have a very restricted geometry and could be of interest for the understanding of water lift in trees.
Capítulos de libros sobre el tema "Generalized cusps"
"Epilogue". En Computational Aspects of Modular Forms and Galois Representations, editado por Bas Edixhoven y Jean-Marc Couveignes. Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691142012.003.0016.
Texto completoPederiva, F., C. J. Umrigar y E. Lipparini. "Diffusion Monte Carlo study of circular quantum dots". En Quantum Monte Carlo, 128. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.00131.
Texto completoActas de conferencias sobre el tema "Generalized cusps"
Langley, Dean S. y Philip L. Marston. "Generalized tertiary rainbow of slightly oblate drops: observations with laser illumination". En Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/lcoa.1997.lmb.3.
Texto completoLan, Chao-Chieh y Yung-Jen Cheng. "Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34191.
Texto completoDean, Cleon E. y Philip L. Marston. "The Opening Rate of the Transverse Cusp Diffraction Catastrophe from Oblate Spheroidal Water Drops". En Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/lcoa.1990.wb2.
Texto completoSimpson, Harry J. y Philip L. Marston. "Scattering of White Light from Oblate Water Drops Near Rainbows and Other Diffraction Catastrophes". En Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/lcoa.1990.wb5.
Texto completoMarston, Philip L. y Gregory Kaduchak. "Secondary and Higher-Order Generalized Rainbows and Unfolded Glories of Oblate Drops: Analysis and Laboratory Observations". En Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.wb.4.
Texto completoYuan, Jian-Min y Mingwhei Tung. "Dissipative quantum and classical dynamics: driven molecular vibration". En International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thb4.
Texto completoHyams, Daniel G. y James H. Leylek. "A Detailed Analysis of Film Cooling Physics: Part III — Streamwise Injection With Shaped Holes". En ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-271.
Texto completo