Artículos de revistas sobre el tema "Generalised Maxwell Model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generalised Maxwell Model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Karner, Timi, Rok Belšak y Janez Gotlih. "Using a Fully Fractional Generalised Maxwell Model for Describing the Time Dependent Sinusoidal Creep of a Dielectric Elastomer Actuator". Fractal and Fractional 6, n.º 12 (4 de diciembre de 2022): 720. http://dx.doi.org/10.3390/fractalfract6120720.
Texto completoFabris, Júlio C. "Cosmological model from generalised Maxwell-Einstein system in higher dimensions". Physics Letters B 267, n.º 1 (septiembre de 1991): 30–32. http://dx.doi.org/10.1016/0370-2693(91)90519-v.
Texto completoZhao, Yanqing, Yuanbao Ni y Weiqiao Zeng. "A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model". Road Materials and Pavement Design 15, n.º 3 (26 de febrero de 2014): 674–90. http://dx.doi.org/10.1080/14680629.2014.889030.
Texto completoLiu, Zizhen y Lynne Bilston. "On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour". Biorheology: The Official Journal of the International Society of Biorheology 37, n.º 3 (mayo de 2000): 191–201. http://dx.doi.org/10.1177/0006355x2000037003002.
Texto completoLong, Le Dinh, Bahman Moradi, Omid Nikan, Zakieh Avazzadeh y António M. Lopes. "Numerical Approximation of the Fractional Rayleigh–Stokes Problem Arising in a Generalised Maxwell Fluid". Fractal and Fractional 6, n.º 7 (2 de julio de 2022): 377. http://dx.doi.org/10.3390/fractalfract6070377.
Texto completoYang, X. S. "Nonlinear viscoelastic compaction in sedimentary basins". Nonlinear Processes in Geophysics 7, n.º 1/2 (30 de junio de 2000): 1–8. http://dx.doi.org/10.5194/npg-7-1-2000.
Texto completoSchiffmann, Kirsten Ingolf. "Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models". International Journal of Materials Research 97, n.º 9 (1 de septiembre de 2006): 1199–211. http://dx.doi.org/10.1515/ijmr-2006-0189.
Texto completoNaveena Kumara, A., Shreyas Punacha y Md Sabir Ali. "Lyapunov exponents and phase structure of Lifshitz and hyperscaling violating black holes". Journal of Cosmology and Astroparticle Physics 2024, n.º 07 (1 de julio de 2024): 061. http://dx.doi.org/10.1088/1475-7516/2024/07/061.
Texto completoGerritzen, Johannes, Michael Müller-Pabel, Jonas Müller, Benjamin Gröger, Niklas Lorenz, Christian Hopmann y Maik Gude. "Development of a High-Fidelity Framework to Describe the Process-Dependent Viscoelasticity of a Fast-Curing Epoxy Matrix Resin including Testing, Modelling, Calibration and Validation". Polymers 14, n.º 17 (2 de septiembre de 2022): 3647. http://dx.doi.org/10.3390/polym14173647.
Texto completoParodi, Pietro y Peter Watson. "PROPERTY GRAPHS – A STATISTICAL MODEL FOR FIRE AND EXPLOSION LOSSES BASED ON GRAPH THEORY". ASTIN Bulletin 49, n.º 2 (27 de marzo de 2019): 263–97. http://dx.doi.org/10.1017/asb.2019.4.
Texto completoCâmara, Gustavo, Rui Micaelo, Nuno Monteiro Azevedo y Hugo Silva. "Incremental Viscoelastic Damage Contact Models for Asphalt Mixture Fracture Assessment". Infrastructures 9, n.º 7 (22 de julio de 2024): 118. http://dx.doi.org/10.3390/infrastructures9070118.
Texto completoCastro-Palacio, Juan Carlos, J. M. Isidro, Esperanza Navarro-Pardo, Luisberis Velázquez-Abad y Pedro Fernández-de-Córdoba. "Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times". Mathematics 9, n.º 1 (31 de diciembre de 2020): 77. http://dx.doi.org/10.3390/math9010077.
Texto completoZHU, ChangSheng, HaiJun ZHANG, Qin YANG y ZhiXian ZHONG. "Generalized maxwell velocity slip boundary model". SCIENTIA SINICA Physica, Mechanica & Astronomica 43, n.º 5 (1 de mayo de 2013): 662–69. http://dx.doi.org/10.1360/132011-827.
Texto completoHu, H. "On the Nonlinear Generalized Maxwell Fluid Model". Journal of Applied Mechanics 70, n.º 2 (1 de marzo de 2003): 309–10. http://dx.doi.org/10.1115/1.1544538.
Texto completoWang, Ping, Jin-Ling Liu y Fang Wang. "The first solution for the helical flows of generalized Maxwell fluid with longitudinal time dependent shear stresses on the boundary". Thermal Science 26, n.º 2 Part A (2022): 1113–21. http://dx.doi.org/10.2298/tsci2202113w.
Texto completoRehman, Aziz Ur, Fahd Jarad, Muhammad Bilal Riaz y Zaheer Hussain Shah. "Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach". Fractal and Fractional 6, n.º 2 (10 de febrero de 2022): 98. http://dx.doi.org/10.3390/fractalfract6020098.
Texto completoNguyen, ST, M.-H. Vu, MN Vu y TN Nguyen. "Generalized Maxwell model for micro-cracked viscoelastic materials". International Journal of Damage Mechanics 26, n.º 5 (7 de octubre de 2015): 697–710. http://dx.doi.org/10.1177/1056789515608231.
Texto completoHess, Siegfried, Bastian Arlt, Sebastian eidenreich, Patrick Ilg, Chris Goddard y Ortwin Hess. "Flow Properties Inferred from Generalized Maxwell Models". Zeitschrift für Naturforschung A 64, n.º 1-2 (1 de febrero de 2009): 81–95. http://dx.doi.org/10.1515/zna-2009-1-213.
Texto completoXiao, Rui, Hongguang Sun y Wen Chen. "An equivalence between generalized Maxwell model and fractional Zener model". Mechanics of Materials 100 (septiembre de 2016): 148–53. http://dx.doi.org/10.1016/j.mechmat.2016.06.016.
Texto completoYenilmez, Bekir, Baris Caglar y E. Murat Sozer. "Viscoelastic modeling of fiber preform compaction in vacuum infusion process". Journal of Composite Materials 51, n.º 30 (27 de marzo de 2017): 4189–203. http://dx.doi.org/10.1177/0021998317699983.
Texto completoZhang, Chao, Jinhao Qiu, Yuansheng Chen y Hongli Ji. "Modeling hysteresis and creep behavior of macrofiber composite–based piezoelectric bimorph actuator". Journal of Intelligent Material Systems and Structures 24, n.º 3 (21 de septiembre de 2012): 369–77. http://dx.doi.org/10.1177/1045389x12460337.
Texto completoCheng, Gang, Jean Claude Gelin y Thierry Barrière. "Physical Modelling and Identification of Polymer Viscoelastic Behaviour above Glass Transition Temperature and Application to the Numerical Simulation of the Hot Embossing Process". Key Engineering Materials 554-557 (junio de 2013): 1763–76. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1763.
Texto completoGuemmadi, M. y A. Ouibrahim. "Generalized Maxwell Model as Viscoelastic Lubricant in Journal Bearing". Key Engineering Materials 478 (abril de 2011): 64–69. http://dx.doi.org/10.4028/www.scientific.net/kem.478.64.
Texto completoKapteijn, F., J. A. Moulijn y R. Krishna. "The generalized Maxwell–Stefan model for diffusion in zeolites:". Chemical Engineering Science 55, n.º 15 (agosto de 2000): 2923–30. http://dx.doi.org/10.1016/s0009-2509(99)00564-3.
Texto completoCorr, D. T., M. J. Starr, R. Vanderby, y T. M. Best. "A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials". Journal of Applied Mechanics 68, n.º 5 (26 de abril de 2001): 787–90. http://dx.doi.org/10.1115/1.1388615.
Texto completoLuo, Dan y Hong-Shan Chen. "A new generalized fractional Maxwell model of dielectric relaxation". Chinese Journal of Physics 55, n.º 5 (octubre de 2017): 1998–2004. http://dx.doi.org/10.1016/j.cjph.2017.08.020.
Texto completoPetera, Jerzy, Kamil Kaminski y Monika Kotynia. "A generalized viscoelastic Maxwell model for semisolid thixotropic alloys." International Journal of Material Forming 3, S1 (abril de 2010): 775–78. http://dx.doi.org/10.1007/s12289-010-0885-y.
Texto completoOrekhov, A. A., L. N. Rabinskiy y G. V. Fedotenkov. "Fundamental Solutions of the Equations of Classical and Generalized Heat Conduction Models". Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, n.º 4 (18 de febrero de 2024): 404–14. http://dx.doi.org/10.26907/2541-7746.2023.4.404-414.
Texto completoKryvko, Andriy, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Orlando Susarrey-Huerta, Eduardo Reyes de Luna y Didier Samayoa. "Fractal Continuum Maxwell Creep Model". Axioms 14, n.º 1 (2 de enero de 2025): 33. https://doi.org/10.3390/axioms14010033.
Texto completoWang, Zhao Jing, Ling Luo, Yu Xi Jia, Jun Peng Gao y Xiao Su Yi. "Predicting Polyurethane Shape Memory Behaviors in Stress-Controlled Situations Using a Viscoelastic Model". Key Engineering Materials 575-576 (septiembre de 2013): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.101.
Texto completoBách, Phạm Tiến, Võ Đại Nhật, Nguyễn Việt Kỳ y Lê Quân. "Maxwell model geotextile encased stone column in soft soil improvement". Science & Technology Development Journal - Engineering and Technology 4, n.º 1 (9 de abril de 2021): first. http://dx.doi.org/10.32508/stdjet.v4i1.772.
Texto completoBANERJEE, N. y R. BANERJEE. "GENERALIZED HAMILTONIAN EMBEDDING OF THE PROCA MODEL". Modern Physics Letters A 11, n.º 24 (10 de agosto de 1996): 1919–27. http://dx.doi.org/10.1142/s0217732396001922.
Texto completoBrandt, F. T., J. Frenkel y D. G. C. McKeon. "Dual symmetry in a generalized Maxwell theory". Modern Physics Letters A 31, n.º 32 (5 de octubre de 2016): 1650184. http://dx.doi.org/10.1142/s0217732316501844.
Texto completoKibaroğlu, Salih, Oktay Cebecioğlu y Ahmet Saban. "Gauging the Maxwell Extended GLn,R and SLn+1,R Algebras". Symmetry 15, n.º 2 (9 de febrero de 2023): 464. http://dx.doi.org/10.3390/sym15020464.
Texto completoBasagiannis, Christos A. y Martin S. Williams. "Modified Generalized Maxwell Model for Hysteresis Behavior of Elastomeric Dampers". Journal of Engineering Mechanics 146, n.º 8 (agosto de 2020): 04020083. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001801.
Texto completoWang, Fan, Wang-Cheng Shen, Jin-Ling Liu y Ping Wang. "The analytic solutions for the unsteady rotating flows of the generalized Maxwell fluid between coaxial cylinders". Thermal Science 24, n.º 6 Part B (2020): 4041–48. http://dx.doi.org/10.2298/tsci2006041w.
Texto completoStropek, Zbigniew, Zbigniew Stropek, Krzysztof Golacki y Krzysztof Golacki. "Stress Relaxation of Apples at Different Deformation Velocities and Temperatures". Transactions of the ASABE 62, n.º 1 (2019): 115–21. http://dx.doi.org/10.13031/trans.12993.
Texto completoMontenegro, David y B. M. Pimentel. "Planar generalized electrodynamics for one-loop amplitude in the Heisenberg picture". International Journal of Modern Physics A 36, n.º 19 (5 de julio de 2021): 2150142. http://dx.doi.org/10.1142/s0217751x21501426.
Texto completoXue, Changfeng y Junxiang Nie. "Exact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space". Mathematical Problems in Engineering 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/641431.
Texto completoAl-Bender, F., V. Lampaert y J. Swevers. "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation". IEEE Transactions on Automatic Control 50, n.º 11 (noviembre de 2005): 1883–87. http://dx.doi.org/10.1109/tac.2005.858676.
Texto completoHu Jun, 胡军, 许凯乐 Xu Kaile, 马壮壮 Ma Zhuangzhuang y 马强 Ma Qiang. "Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model". Laser & Optoelectronics Progress 57, n.º 9 (2020): 092201. http://dx.doi.org/10.3788/lop57.092201.
Texto completoNguyen, TuanDung, Jin Li, Lijie Sun, DanhQuang Tran y Fuzhen Xuan. "Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model". Polymers 13, n.º 13 (2 de julio de 2021): 2203. http://dx.doi.org/10.3390/polym13132203.
Texto completoKamenar, Ervin y Saša Zelenika. "Issues in validation of pre-sliding friction models for ultra-high precision positioning". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, n.º 3 (14 de febrero de 2018): 997–1006. http://dx.doi.org/10.1177/0954406218758797.
Texto completoIKEDA, Kohsuke, Ryo OMURA, Toshikatsu NOHARA, Kazunori KUGA, Ryoji OKABE, Satoshi ISHIKAWA y Masaki FUJIKAWA. "Applicability of Generalized Maxwell Model to Creep Deformation Behavior of Thermoplastics". Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): J122–18. http://dx.doi.org/10.1299/jsmemecj.2021.j122-18.
Texto completoNiekamp, R., E. Stein y A. Idesman. "Finite elements in space and time for generalized viscoelastic maxwell model". Computational Mechanics 27, n.º 1 (29 de enero de 2001): 49–60. http://dx.doi.org/10.1007/s004660000213.
Texto completoFrancis, Royce A., Srinivas Reddy Geedipally, Seth D. Guikema, Soma Sekhar Dhavala, Dominique Lord y Sarah LaRocca. "Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model". Risk Analysis 32, n.º 1 (30 de julio de 2011): 167–83. http://dx.doi.org/10.1111/j.1539-6924.2011.01659.x.
Texto completoLi, Chuangdi, Xuefeng Yang, Yuxiang Li y Xinguang Ge. "Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers". Structures 47 (enero de 2023): 425–33. http://dx.doi.org/10.1016/j.istruc.2022.10.127.
Texto completoCao, Limei, Cong Li, Botong Li, Xinhui Si y Jing Zhu. "Electro-osmotic flow of generalized Maxwell fluids in triangular microchannels based on distributed order time fractional constitutive model". AIP Advances 13, n.º 2 (1 de febrero de 2023): 025146. http://dx.doi.org/10.1063/5.0138004.
Texto completoFrolova, A. A. "Numerical Comparison of the Generalized Maxwell and Cercignani–Lampis Models". Computational Mathematics and Mathematical Physics 60, n.º 12 (diciembre de 2020): 2094–107. http://dx.doi.org/10.1134/s0965542520120040.
Texto completoJalocha, D., A. Constantinescu y R. Neviere. "Revisiting the identification of generalized Maxwell models from experimental results". International Journal of Solids and Structures 67-68 (agosto de 2015): 169–81. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.018.
Texto completo