Literatura académica sobre el tema "Generalised flag manifolds"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Generalised flag manifolds".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Generalised flag manifolds"
Alves, Luciana Aparecida y Neiton Pereira da Silva. "Invariant Einstein metrics on generalized flag manifolds of $Sp(n)$ and $SO(2n)$". Boletim da Sociedade Paranaense de Matemática 38, n.º 1 (19 de febrero de 2018): 227. http://dx.doi.org/10.5269/bspm.v38i1.36604.
Texto completoYadav, S. y D. L. Suthar. "On Kenmatsu manifolds Satisfying Certain Conditions". Journal of the Tensor Society 3, n.º 00 (30 de junio de 2009): 19–26. http://dx.doi.org/10.56424/jts.v3i01.9968.
Texto completoARVANITOYEORGOS, ANDREAS, IOANNIS CHRYSIKOS y YUSUKE SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS". International Journal of Mathematics 24, n.º 10 (septiembre de 2013): 1350077. http://dx.doi.org/10.1142/s0129167x13500778.
Texto completoDe, Uday Chand, Abdallah Abdelhameed Syied, Nasser Bin Turki y Suliman Alsaeed. "A Study of Generalized Projective P − Curvature Tensor on Warped Product Manifolds". Journal of Mathematics 2021 (27 de diciembre de 2021): 1–10. http://dx.doi.org/10.1155/2021/7882356.
Texto completoHaseeb, Abdul y Rajendra Prasad. "Certain results on Lorentzian para-Kenmotsu manifolds". Boletim da Sociedade Paranaense de Matemática 39, n.º 3 (1 de enero de 2021): 201–20. http://dx.doi.org/10.5269/bspm.40607.
Texto completoShenawy, Sameh y Bülent Ünal. "The W2-curvature tensor on warped product manifolds and applications". International Journal of Geometric Methods in Modern Physics 13, n.º 07 (25 de julio de 2016): 1650099. http://dx.doi.org/10.1142/s0219887816500997.
Texto completoARVANITOYEORGOS, ANDREAS y IOANNIS CHRYSIKOS. "INVARIANT EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH TWO ISOTROPY SUMMANDS". Journal of the Australian Mathematical Society 90, n.º 2 (abril de 2011): 237–51. http://dx.doi.org/10.1017/s1446788711001303.
Texto completoNagaraja, H. G. y C. R. Premalatha. "Da-Homothetic Deformation of K-Contact Manifolds". ISRN Geometry 2013 (16 de diciembre de 2013): 1–7. http://dx.doi.org/10.1155/2013/392608.
Texto completoRANDJBAR-DAEMI, S. y J. STRATHDEE. "THE RENORMAUZATION GROUP FOR FLAG MANIFOLDS". International Journal of Modern Physics A 08, n.º 20 (10 de agosto de 1993): 3509–28. http://dx.doi.org/10.1142/s0217751x93001417.
Texto completoZhuang, Xiaobo. "Vanishing theorems of generalized Witten genus for generalized complete intersections in flag manifolds". International Journal of Mathematics 27, n.º 09 (agosto de 2016): 1650076. http://dx.doi.org/10.1142/s0129167x16500762.
Texto completoTesis sobre el tema "Generalised flag manifolds"
Treib, Nicolaus [Verfasser] y Anna [Akademischer Betreuer] Wienhard. "Generalized Schottky groups, oriented flag manifolds and proper actions / Nicolaus Treib ; Betreuer: Anna Wienhard". Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177149311/34.
Texto completoFriday, Brian Matthew. "VANISHING LOCAL SCALAR INVARIANTS ON GENERALIZED PLANE WAVE MANIFOLDS". CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/884.
Texto completoLOHOVE, SIMON PETER. "Holomorphic curvature of Kähler Einstein metrics on generalised flag manifolds". Doctoral thesis, 2019. http://hdl.handle.net/2158/1151431.
Texto completoΧρυσικός, Ιωάννης. "Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιών". Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4418.
Texto completoA Riemannian manifold (M, g) is called Einstein, if it has constant Ricci curvature. It is well known that if (M=G/K, g) is a compact homogeneous Riemannian manifold, then the G-invariant \tl{Einstein} metrics of unit volume, are the critical points of the scalar curvature function restricted to the space of all G-invariant metrics with volume 1. For a G-invariant Riemannian metric the Einstein equation reduces to a system of algebraic equations. The positive real solutions of this system are the $G$-invariant Einstein metrics on M. An important family of compact homogeneous spaces consists of the generalized flag manifolds. These are adjoint orbits of a compact semisimple Lie group. Flag manifolds of a compact connected semisimple Lie group exhaust all compact and simply connected homogeneous Kahler manifolds and are of the form G/C(S), where C(S) is the centralizer (in G) of a torus S in G. Such homogeneous spaces admit a finite number of G-invariant complex structures, and for any such complex structure there is a unique compatible G-invariant Kahler-Einstein metric. In this thesis we classify all flag manifolds M=G/K of a compact simple Lie group G, whose isotropy representation decomposes into 2 or 4, isotropy summands. For these spaces we solve the (homogeneous) Einstein equation, and we obtain the explicit form of new G-invariant Einstein metrics. For most cases we give the classification of homogeneous Einstein metrics. We also examine the isometric problem. For the construction of the Einstein equation on certain flag manifolds with four isotropy summands, we apply for first time the twistor fibration of a flag manifold over an isotropy irreducible symmetric space of compact type. This method is new and it can be used also for other flag manifolds. For flag manifolds with two isotropy summands, we use the restricted Hessian and we characterize the new Einstein metrics as local minimum points of the scalar curvature function restricted to the space of G-invariant Riemannian metrics of volume 1. We mention that the classification of flag manifolds with two isotropy summands gives us new examples of homogeneous spaces, for which the motion of a charged particle under the electromagnetic field, and the geodesics curves, are completely determined.
Libros sobre el tema "Generalised flag manifolds"
Ortaçgil, Ercüment H. Klein Geometries. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821656.003.0017.
Texto completoCapítulos de libros sobre el tema "Generalised flag manifolds"
Arvanitoyeorgos, Andreas. "Generalized flag manifolds". En The Student Mathematical Library, 95–112. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/stml/022/07.
Texto completoZinn-Justin, Jean. "Generalized non-linear σ-models in two dimensions". En Quantum Field Theory and Critical Phenomena, 692–720. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0029.
Texto completoActas de conferencias sobre el tema "Generalised flag manifolds"
ARVANITOYEORGOS, Andreas, Ioannis CHRYSIKOS y Yusuke SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH G2-TYPE 𝔱-ROOTS". En Proceedings of the 3rd International Colloquium on Differential Geometry and Its Related Fields. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814541817_0002.
Texto completoNishimori, Yasunori, Shotaro Akaho y Mark D. Plumbley. "Riemannian Optimization Method on Generalized Flag Manifolds for Complex and Subspace ICA". En Bayesian Inference and Maximum Entropy Methods In Science and Engineering. AIP, 2006. http://dx.doi.org/10.1063/1.2423264.
Texto completoARVANITOYEORGOS, Andreas, Ioannis CHRYSIKOS y Yusuke SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS Sp(n)/(U(p) × U(q) × Sp(n-p-q))". En Proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814355476_0001.
Texto completo