Literatura académica sobre el tema "Gene selection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gene selection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gene selection"
Liu, Junjie, Peng Li, Liuyang Lu, Lanfen Xie, Xiling Chen y Baizhong Zhang. "Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua Linn". Plant Protection Science 55, No. 1 (20 de noviembre de 2018): 61–71. http://dx.doi.org/10.17221/20/2018-pps.
Texto completoR, Dr Prema. "Feature Selection for Gene Expression Data Analysis – A Review". International Journal of Psychosocial Rehabilitation 24, n.º 5 (25 de mayo de 2020): 6955–64. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020695.
Texto completoLee, K. E., N. Sha, E. R. Dougherty, M. Vannucci y B. K. Mallick. "Gene selection: a Bayesian variable selection approach". Bioinformatics 19, n.º 1 (1 de enero de 2003): 90–97. http://dx.doi.org/10.1093/bioinformatics/19.1.90.
Texto completoKlee, Eric W., Stephen C. Ekker y Lynda B. M. Ellis. "Target selection forDanio rerio functional genomics". genesis 30, n.º 3 (2001): 123–25. http://dx.doi.org/10.1002/gene.1045.
Texto completoTsakas, SC. "Species versus gene selection". Genetics Selection Evolution 21, n.º 3 (1989): 247. http://dx.doi.org/10.1186/1297-9686-21-3-247.
Texto completoGreenspan, R. J. "Selection, Gene Interaction, and Flexible Gene Networks". Cold Spring Harbor Symposia on Quantitative Biology 74 (1 de enero de 2009): 131–38. http://dx.doi.org/10.1101/sqb.2009.74.029.
Texto completoD., Saravanakumar. "Improving Microarray Data Classification Using Optimized Clustering-Based Hybrid Gene Selection Algorithm". Journal of Advanced Research in Dynamical and Control Systems 51, SP3 (28 de febrero de 2020): 486–95. http://dx.doi.org/10.5373/jardcs/v12sp3/20201283.
Texto completoNesvadbová, M. y A. Knoll. "Evaluation of reference genes for gene expression studies in pig muscle tissue by real-time PCR". Czech Journal of Animal Science 56, No. 5 (30 de mayo de 2011): 213–16. http://dx.doi.org/10.17221/1428-cjas.
Texto completoGilad, Yoav, Alicia Oshlack y Scott A. Rifkin. "Natural selection on gene expression". Trends in Genetics 22, n.º 8 (agosto de 2006): 456–61. http://dx.doi.org/10.1016/j.tig.2006.06.002.
Texto completoBehar, Hilla y Marcus W. Feldman. "Gene-culture coevolution under selection". Theoretical Population Biology 121 (mayo de 2018): 33–44. http://dx.doi.org/10.1016/j.tpb.2018.03.001.
Texto completoTesis sobre el tema "Gene selection"
Petronella, Nicholas. "Gene Conversions and Selection in the Gene Families of Primates". Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20538.
Texto completoZid, Mouldi. "Gene Conversions in the Siglec and CEA Immunoglobulin Gene Families of Primates". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23625.
Texto completoLiu, Zhilin. "Gene expression profiling of bovine ovarian follicular selection". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4490.
Texto completoThe entire dissertation/thesis text is included in the research.pf file; the official abstract appears in the short.pf file (which also appears in the research.pf); a non-technical general description, or public abstract, appears in the public.pf file. Title from title screen of research.pf file (viewed on May 6, 2009) Vita. Includes bibliographical references.
Huisman, Jisca. "Gene Flow and Natural Selection in Atlantic Salmon". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16991.
Texto completoChen, Li. "Ranking-Based Methods for Gene Selection in Microarray Data". Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3888.
Texto completoMedeiros, Lucas Paoliello de. "Coevolution in mutualistic networks: gene flow and selection mosaics". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41134/tde-17102017-154829/.
Texto completoInterações ecológicas como predação, competição e mutualismo são importantes forças que influenciam a evolução de espécies. Chamamos de coevolução a mudança evolutiva recíproca em espécies que interagem. A Teoria do Mosaico Geográfico da Coevolução (TMGC) fornece um arcabouço teórico para entender como conjuntos de populações coevoluem ao longo do espaço. Dois aspectos fundamentais da TMGC são o fluxo gênico entre populações e a presença de mosaicos de seleção, isto é, conjuntos de locais com regimes de seleção particulares. Diversos estudos exploraram como o acoplamento entre fenótipos de diferentes espécies evolui em pares ou pequenos grupos de espécies. Entretanto, interações ecológicas frequentemente formam grandes redes que conectam dezenas de espécies presentes em uma comunidade. Em redes de mutualismos, por exemplo, a organização das interações pode influenciar processos ecológicos e evolutivos. Um próximo passo para a compreensão do processo coevolutivo consiste em investigar como aspectos da TMGC influenciam a evolução de espécies em redes de interações. Nesta dissertação, tentamos preencher esta lacuna usando um modelo matemático de coevolução, ferramentas de redes complexas e informação sobre redes mutualistas empíricas. Nossas simulações numéricas do modelo coevolutivo apontam para três principais conclusões. Primeiro, o fluxo gênico influencia os padrões fenotípicos gerados por coevolução e pode favorecer a emergência de acoplamento fenotípico entre espécies dependendo do mosaico de seleção. Segundo, a organização de redes mutualistas influencia a coevolução, mas este efeito pode desaparecer quando o fluxo gênico favorece acoplamento fenotípico. Mutualismos íntimos, como proteção de plantas hospedeiras por formigas, formam redes pequenas e compartimentalizadas que geram um maior acoplamento fenotípico do que as redes grandes e aninhadas típicas de mutualismos entre espécies de vida livre, como polinização. Por fim, a fragmentação de habitat, ao extinguir o fluxo gênico, pode reduzir as adaptações recíprocas entre espécies e ao mesmo tempo tornar cada espécie mais adaptada ao seu ambiente abiótico local. Em suma, mostramos que interações complexas entre fluxo gênico, estrutura geográfica da seleção e organização de redes ecológicas moldam a evolução de grandes grupos de espécies. Dessa forma, podemos traçar previsões sobre como impactos ambientais como a fragmentação de habitat irão alterar a evolução de interações ecológicas
Dai, Xiaotian. "Novel Statistical Models for Quantitative Shape-Gene Association Selection". DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6856.
Texto completoPerucchini, Matteo. "The cervid PrP gene : patterns of variability and selection". Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/15634.
Texto completoRiddoch, B. "Selection component analysis of the PGI polymorphism in Sphaeroma rugicauda". Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378440.
Texto completoPanji, Sumir. "Identification of bacterial pathogenic gene classes subject to diversifying selection". Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5842_1297942831.
Texto completoAvailability of genome sequences for numerous bacterial species comprising of different bacterial strains allows elucidation of species and strain specific adaptations that facilitate their survival in widely fluctuating micro-environments and enhance their pathogenic potential. Different bacterial species use different strategies in their pathogenesis and the pathogenic potential of a bacterial species is dependent on its genomic complement of virulence factors. A bacterial virulence factor, within the context of this study, is defined as any endogenous protein product encoded by a gene that aids in the adhesion, invasion, colonization, persistence and pathogenesis of a bacterium within a host. Anecdotal evidence suggests that bacterial virulence genes are undergoing diversifying evolution to counteract the rapid adaptability of its host&rsquo
s immune defences. Genome sequences of pathogenic bacterial species and strains provide unique opportunities to study the action of diversifying selection operating on different classes of bacterial genes.
Libros sobre el tema "Gene selection"
Collins, Warwick. A silent gene theory of evolution. Buckingham, UK: University of Buckingham Press, 2009.
Buscar texto completoThe genial gene: Deconstructing Darwinian selfishness. Berkeley: University of California Press, 2009.
Buscar texto completoSilson, Roy G. Additive gene systems: An explanation for problems in evolution and selection. Herts: Greenfield, 1988.
Buscar texto completoUnnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1998.
Buscar texto completoWingerson, Lois. Unnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1999.
Buscar texto completoFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Buscar texto completoFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Buscar texto completoDawkins, Richard. The extended phenotype: The long reach of the gene. Oxford: Oxford University Press, 1989.
Buscar texto completoDawkins, Richard. The Extended Phenotype: The long reach of the gene. Oxford: Oxford University Press, 1999.
Buscar texto completoDawkins, Richard. The Selfish Gene. Oxford: Oxford University Press, 1999.
Buscar texto completoCapítulos de libros sobre el tema "Gene selection"
Kriegler, Michael. "Selection and Amplification". En Gene Transfer and Expression, 103–13. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11891-5_6.
Texto completoGoodnight, Charles J. "Gene Interaction and Selection". En Plant Breeding Reviews, 269–91. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650240.ch12.
Texto completoRodriguez-Grande, Jorge y Raul Fernandez-Lopez. "Measuring Plasmid Conjugation Using Antibiotic Selection". En Horizontal Gene Transfer, 93–98. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9877-7_6.
Texto completoBradshaw, John E. "Gene Expression and Selection of Major Genes". En Plant Breeding: Past, Present and Future, 133–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23285-0_5.
Texto completoRothenberg, S. Michael, Joan Fisher, David Zapol, David Anderson, Yasumichi Hitoshi, Philip Achacoso y Gany P. Nolan. "Intracellular Combinatorial Chemistry with Peptides in Selection of Caspase-like Inhibitors". En Gene Therapy, 171–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72160-1_18.
Texto completoHust, Michael, André Frenzel, Thomas Schirrmann y Stefan Dübel. "Selection of Recombinant Antibodies from Antibody Gene Libraries". En Gene Function Analysis, 305–20. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-721-1_14.
Texto completoHust, Michael, Stefan Dübel y Thomas Schirrmann. "Selection of Recombinant Antibodies From Antibody Gene Libraries". En Gene Function Analysis, 243–55. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-547-3_14.
Texto completoBorges, Helyane Bronoski y Julio Cesar Nievola. "Gene Selection from Microarray Data". En Intelligent Text Categorization and Clustering, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85644-3_1.
Texto completoMirzal, Andri. "SVD Based Gene Selection Algorithm". En Lecture Notes in Electrical Engineering, 223–30. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4585-18-7_26.
Texto completoHudson, Richard R. y Norman L. Kaplan. "Gene Trees with Background Selection". En Non-Neutral Evolution, 140–53. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2383-3_12.
Texto completoActas de conferencias sobre el tema "Gene selection"
Aouf, Mohamad, Amr Sharawi, Khaled Samir, Sultan Almotatiri, Abdulla Bajahzar y Ghada Kareem. "Gene Expression Data For Gene Selection Using Ensemble Based Feature Selection". En 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). IEEE, 2019. http://dx.doi.org/10.1109/icicis46948.2019.9014722.
Texto completoMarvi-Khorasani, Hanieh y Hamid Usefi. "Feature Clustering Towards Gene Selection". En 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00240.
Texto completoYildiz, Oktay, Mesut Tez, H. Sakir Bilge, M. Ali Akcayol y Inan Guler. "Gene selection for breast cancer". En 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204693.
Texto completoWang, Fei y Tao Li. "Gene Selection via Matrix Factorization". En 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering. IEEE, 2007. http://dx.doi.org/10.1109/bibe.2007.4375686.
Texto completoMitra, P. y D. D. Majumder. "Feature selection and gene clustering from gene expression data". En Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334213.
Texto completoLiu, Quanzhong, Yang Zhang, Yong Wang y Zhengguo Hu. "Study of Informative Gene Selection for Gene Expression Profiles". En 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.94.
Texto completoWang, Shulin, Huowang Chen y Shutao Li. "Gene Selection Using Neighborhood Rough Set from Gene Expression Profiles". En 2007 International Conference on Computational Intelligence and Security (CIS 2007). IEEE, 2007. http://dx.doi.org/10.1109/cis.2007.169.
Texto completoQi, Jianlong y Jian Tang. "Gene Ontology Driven Feature Selection from Microarray Gene Expression Data". En 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. IEEE, 2006. http://dx.doi.org/10.1109/cibcb.2006.330968.
Texto completoLancucki, Adrian, Indrajit Saha y Piotr Lipinski. "A new evolutionary gene selection technique". En 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. http://dx.doi.org/10.1109/cec.2015.7257080.
Texto completoBanu, P. K. Nizar y S. Andrews. "Informative Gene Selection - An evolutionary approach". En 2013 International Conference on Current Trends in Information Technology (CTIT). IEEE, 2013. http://dx.doi.org/10.1109/ctit.2013.6749491.
Texto completoInformes sobre el tema "Gene selection"
Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2008. http://dx.doi.org/10.21236/ada491350.
Texto completoHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, abril de 2004. http://dx.doi.org/10.21236/ada426169.
Texto completoHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, abril de 2005. http://dx.doi.org/10.21236/ada454306.
Texto completoCuriel, David T., Gene Siegal y Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2007. http://dx.doi.org/10.21236/ada485589.
Texto completoCuriel, David T., Gene Siegal y Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2006. http://dx.doi.org/10.21236/ada472761.
Texto completoSavageau, Michael A. Selection and Computational Potential of Gene Control Elements and Their Circuitry. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2001. http://dx.doi.org/10.21236/ada389769.
Texto completoZeng, Jian, Ali Toosi, Rohan L. Fernando, Jack C. M. Dekkers y Dorian J. Garrick. Genomic Selection of Purebred Animals for Crossbred Performance in the Presence of Dominant Gene Action. Ames (Iowa): Iowa State University, enero de 2013. http://dx.doi.org/10.31274/ans_air-180814-1249.
Texto completoYeung, Ka Y., Roger E. Bumgarner y Adrian E. Raftery. Bayesian Model Averaging: Development of an Improved Multi-Class, Gene Selection and Classification Tool for Microarray Data. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2004. http://dx.doi.org/10.21236/ada454826.
Texto completoKufe, Donald W. Gene Therapy of Breast Cancer: Studies of Selective Promoter/Enhancer-Modified Vectors to Deliver Suicide Genes. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1998. http://dx.doi.org/10.21236/ada368313.
Texto completoBagamasbad, Pia. Selective Gene Regulation by Androgen Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada612316.
Texto completo