Literatura académica sobre el tema "Gels and Hydrogels"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gels and Hydrogels".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gels and Hydrogels"
Xu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang y Qiang Wang. "High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties". Polymers 10, n.º 9 (14 de septiembre de 2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Texto completoBurchak, Vadym, Fritz Koch, Leonard Siebler, Sonja Haase, Verena K. Horner, Xenia Kempter, G. Björn Stark et al. "Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells". International Journal of Molecular Sciences 23, n.º 14 (19 de julio de 2022): 7939. http://dx.doi.org/10.3390/ijms23147939.
Texto completoNaficy, Sina, Hugh R. Brown, Joselito M. Razal, Geoffrey M. Spinks y Philip G. Whitten. "Progress Toward Robust Polymer Hydrogels". Australian Journal of Chemistry 64, n.º 8 (2011): 1007. http://dx.doi.org/10.1071/ch11156.
Texto completoBhuyan, Md Murshed y Jae-Ho Jeong. "Gels/Hydrogels in Different Devices/Instruments—A Review". Gels 10, n.º 9 (23 de agosto de 2024): 548. http://dx.doi.org/10.3390/gels10090548.
Texto completoShoukat, Hina, Fahad Pervaiz y Sobia Noreen. "Novel Crosslinking Methods to Design Hydrogels". Global Pharmaceutical Sciences Review I, n.º I (30 de diciembre de 2016): 1–5. http://dx.doi.org/10.31703/gpsr.2016(i-i).01.
Texto completoLi, Peng, Nam Hoon Kim, Sambhu Bhadra y Joong Hee Lee. "Electroresponsive Property of Novel Poly(acrylate- acryloyloxyethyl trimethyl ammonium chloride)/Clay Nanocomposite Hydrogels". Advanced Materials Research 79-82 (agosto de 2009): 2263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2263.
Texto completoGorantla, Srividya, Tejashree Waghule, Vamshi Krishna Rapalli, Prem Prakash Singh, Sunil Kumar Dubey, Ranendra Narayan Saha y Gautam Singhvi. "Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery". Recent Patents on Drug Delivery & Formulation 13, n.º 4 (29 de abril de 2020): 291–300. http://dx.doi.org/10.2174/1872211314666200108094851.
Texto completoO’Connor, Naphtali A., Abdulhaq Syed, Madeline Wong, Josiah Hicks, Greisly Nunez, Andrei Jitianu, Zach Siler y Marnie Peterson. "Polydopamine Antioxidant Hydrogels for Wound Healing Applications". Gels 6, n.º 4 (31 de octubre de 2020): 39. http://dx.doi.org/10.3390/gels6040039.
Texto completoFallon, Halligan, Pezzoli, Geever y Higginbotham. "Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery". Gels 5, n.º 3 (29 de agosto de 2019): 41. http://dx.doi.org/10.3390/gels5030041.
Texto completoSeida, Yoshimi y Hideaki Tokuyama. "Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent". Gels 8, n.º 4 (3 de abril de 2022): 220. http://dx.doi.org/10.3390/gels8040220.
Texto completoTesis sobre el tema "Gels and Hydrogels"
Vaculíková, Hana. "Hyaluronan hydrogels". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401877.
Texto completoShukla, Pranav. "Inducing Liquid Evaporation with Hygroscopic Gels". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101555.
Texto completoMaster of Science
Park, Tae Gwan. "Immobilized biocatalysts in stimuli-sensitive hydrogels /". Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/8070.
Texto completoRehab, M. M. A. M. "Preparation and characterization of copolymeric hydrogels". Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381697.
Texto completoGräfe, David. "Tetra-Responsive Grafted Hydrogels for Flow Control in Microfluidics". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219926.
Texto completoSingh, Nishant. "Functional gels as microreactors". Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/397698.
Texto completoHidrogelantes funcionalizados sobre autoensamblaje pueden demostrar como la catálisis enzimática mejorada basada en varios factores tales como bolsillos hidrofóbicos, cambio en pH, cambio en pKa, aumento en la concentración local de los sitios activos etc. Aquí presentamos tales tipos de hidrogelantes que son capaces de demostrar varios tipos de reacciones importantes como aldolica, Mannicli, hidrolisis, deactetalisation, etc.
Mujeeb, Ayeesha. "Self-assembled octapeptide gels for cartilage repair". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/selfassembled-octapeptide-gels-for-cartilage-repair(ce161da3-4ce4-4d42-b0cc-6933fc6aa394).html.
Texto completoBuerkle, Lauren Elizabeth. "Tailoring the Properties of Supramolecular Gels". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1317946752.
Texto completoGruberová, Eliška. "Gelace hydrofobizovaného hyaluronanu". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449414.
Texto completoLe, blay Heiva. "Use of shear wave imaging to assess the mechanical and fracture behaviors of tough model gels". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS096.
Texto completoA hydrogel is a soft material, largely swollen with water, made elastic via a network of polymer chains. A gel is inherently fragile. This brittleness can be overcome by adding dynamic sacrificial bonds. Macromolecular engineering of the 21st century has made possible the formulation of gels for use in biology in order to provide synthetic materials while addressing biocompatibility issues, tissue/material interface compatibility, and mechanical properties that the body requires. However, the fracture of these highly deformable and sometimes viscoelastic materials remains a poorly understood subject that has been little investigated experimentally. The challenge today is to better understand the mechanisms involved at the crack tip but the experimental techniques that allow a local approach and with fast acquisition rates are limited. Our work aims at developing an innovative method to probe the fracture of gels. Water being their main component, these materials, like biological tissues, are an excellent platform to study the propagation of acoustic waves, i.e. shear (S) or compression (P) waves. In materials composed mainly of water, compressional waves, typically ultrasound, propagate at about 1500 m/s (P-wave velocity in water) while shear waves are of the order of m/s (between about 1-8 m/s) and their velocity increases with the rigidity of the material. It is therefore possible to see the S waves propagating through the difference in speed between these two waves. This is the principle of shear wave elastography, an imaging technique used in this study to understand the mechanics and fracture of hydrogels.The gel fracture was studied locally at the crack tip in a quasi-static way. Then, the physical phenomena involved during crack propagation were investigated using ultrafast imaging.It is important to understand how the fracture propagates and if it is possible to avoid or stop it. The goal of any material is to avoid breaking and therefore to resist fracture propagation
Libros sobre el tema "Gels and Hydrogels"
Park, Kinam. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic Pub., 1993.
Buscar texto completoM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting y American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), eds. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Buscar texto completoScott, Adams, Palaszewski Bryan y United States. National Aeronautics and Space Administration., eds. Nanoparticulate gellants for metallized gelled liquid hydrogen wth aluminum. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Buscar texto completoB, Sunkara H. y United States. National Aeronautics and Space Administration., eds. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Buscar texto completoHydrogels in medicine and pharmacy. Boca Raton, Fla: CRC Press, 1986.
Buscar texto completoPeppas, Nikolaos. Hydrogels in Medicine and Pharmacy: Fundamentals. CRC Press, 1987.
Buscar texto completoPark, Kinam, Haesun Park y Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Buscar texto completoPark, Kinam, Haesun Park y Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Buscar texto completoPark, Kinam, Haesun Park y Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Buscar texto completoGels Handbook : Fundamentals, Properties and ApplicationsVolume 1 : Fundamentals of Hydrogelsvolume 2 : Applications of Hydrogels in Regenerative Medicinevolume 3: Application of Hydrogels in Drug Delivery and Biosensing. World Scientific Publishing Co Pte Ltd, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Gels and Hydrogels"
Brøndsted, Helle y Jindřich Kopeček. "pH-Sensitive Hydrogels". En Polyelectrolyte Gels, 285–304. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch017.
Texto completoKong, Weiqing, Qingqing Dai, Cundian Gao, Junli Ren, Chuanfu Liu y Runcang Sun. "Hemicellulose-Based Hydrogels and Their Potential Application". En Polymer Gels, 87–127. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6086-1_3.
Texto completoOsada, Yoshihito, Ryuzo Kawamura y Ken-Ichi Sano. "Biomimetic Functions of Synthetic Polymer Gels". En Hydrogels of Cytoskeletal Proteins, 73–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27377-8_7.
Texto completoGitsov, Ivan, Thomas Lys y Chao Zhu. "Amphiphilic Hydrogels with Highly Ordered Hydrophobic Dendritic Domains". En Polymer Gels, 218–32. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch015.
Texto completoDualeh, Abdulkadir J. y Carol A. Steiner. "Structure and Properties of Surfactant-Bridged Viscoelastic Hydrogels". En Polyelectrolyte Gels, 42–52. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch003.
Texto completoOppermann, W. "Swelling Behavior and Elastic Properties of Ionic Hydrogels". En Polyelectrolyte Gels, 159–70. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch010.
Texto completoDong, Liang Chang y Allan S. Hoffman. "Thermally Reversible Hydrogels". En Reversible Polymeric Gels and Related Systems, 236–44. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch016.
Texto completoChau, Mokit, Shivanthi Easwari Sriskandha, Héloïse Thérien-Aubin y Eugenia Kumacheva. "Supramolecular Nanofibrillar Polymer Hydrogels". En Supramolecular Polymer Networks and Gels, 167–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_5.
Texto completoAllcock, Harry R. y Archel Ambrosio. "Synthesis and Characterization of pH-Responsive Poly(organophosphazene) Hydrogels". En Polymer Gels, 82–101. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch006.
Texto completoPape, A. C. H. y Patricia Y. W. Dankers. "Supramolecular Hydrogels for Regenerative Medicine". En Supramolecular Polymer Networks and Gels, 253–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_7.
Texto completoActas de conferencias sobre el tema "Gels and Hydrogels"
Morovati, Vahid, Mohammad Ali Saadat y Roozbeh Dargazany. "Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels". En ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12253.
Texto completoGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes y Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing". En ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Texto completoVicente, Adam, Zachary McCreery y Karen Chang Yan. "Printability of Hydrogels for Hydrogel Molding Based Microfluidic Device Fabrication". En ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11545.
Texto completoHaraguchi, Kazutoshi y Toru Takehisa. "Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80533.
Texto completoMorovati, Vahid y Roozbeh Dargazany. "Micro-Mechanical Modeling of the Stress Softening in Double-Network Hydrogels". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88252.
Texto completoThien, Austen y Kishore Pochiraju. "Additive Manufacturing Techniques for Soft Electroactive Polymer Hydrogels Using a Customized 3D Printer". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72007.
Texto completoMarks, William H., Sze C. Yang, George W. Dombi y Sujata K. Bhatia. "Carbon Nanobrushes Embedded Within Hydrogel Composites for Tissue Engineering". En ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93122.
Texto completoYao, Hai y Weiyong Gu. "New Insight Into Deformation-Dependent Hydraulic Permeability of Hydrogels and Cartilage". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32520.
Texto completoDrzewiecki, Kathryn, Ian Gaudet, Douglas Pike, Jonathan Branch, Vikas Nanda y David Shreiber. "Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels". En ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14705.
Texto completoEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant y Virginia L. Ferguson. "The Mechanical Behavior of Engineered Hydrogels". En ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Texto completoInformes sobre el tema "Gels and Hydrogels"
Benicewicz, Brian C., Glenn A. Eisman, S. K. Kumar y S. G. Greenbaum. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices. Office of Scientific and Technical Information (OSTI), febrero de 2014. http://dx.doi.org/10.2172/1121336.
Texto completo