Literatura académica sobre el tema "Gellan gum"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gellan gum".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gellan gum"
Giavasis, Ioannis, Linda M. Harvey y Brian McNeil. "Gellan Gum". Critical Reviews in Biotechnology 20, n.º 3 (enero de 2000): 177–211. http://dx.doi.org/10.1080/07388550008984169.
Texto completoTran, Thi Phuong An, Hoon Cho, Gye-Chun Cho, Jong-In Han y Ilhan Chang. "Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material". Applied Sciences 11, n.º 17 (26 de agosto de 2021): 7884. http://dx.doi.org/10.3390/app11177884.
Texto completoSukumar, Soumiya, Santhiagu Arockiasamy y Moothona Manjusha Chemmattu. "Gellan gum biopolymer- A review". Research Journal of Chemistry and Environment 25, n.º 10 (25 de septiembre de 2021): 150–57. http://dx.doi.org/10.25303/2510rjce150157.
Texto completoSun, Ling, Yazhen Wang, Meixiang Yue, Xialiang Ding, Xiangyang Yu, Jing Ge, Wenjing Sun y Lixiao Song. "Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring". Foods 11, n.º 24 (16 de diciembre de 2022): 4078. http://dx.doi.org/10.3390/foods11244078.
Texto completoWang, Xia, Ping Xu, Yong Yuan, Changlong Liu, Dezhong Zhang, Zhengting Yang, Chunyu Yang y Cuiqing Ma. "Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium". Applied and Environmental Microbiology 72, n.º 5 (mayo de 2006): 3367–74. http://dx.doi.org/10.1128/aem.72.5.3367-3374.2006.
Texto completoHara, Shintaro, Yasuyuki Hashidoko, Roman V. Desyatkin, Ryusuke Hatano y Satoshi Tahara. "High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum". Applied and Environmental Microbiology 75, n.º 9 (13 de marzo de 2009): 2811–19. http://dx.doi.org/10.1128/aem.02660-08.
Texto completoSworn, G., G. R. Sanderson y W. Gibson. "Gellan gum fluid gels". Food Hydrocolloids 9, n.º 4 (diciembre de 1995): 265–71. http://dx.doi.org/10.1016/s0268-005x(09)80257-9.
Texto completoGrasdalen, Hans y Olav Smidsrød. "Gelation of gellan gum". Carbohydrate Polymers 7, n.º 5 (enero de 1987): 371–93. http://dx.doi.org/10.1016/0144-8617(87)90004-x.
Texto completoHilal, Adonis, Anna Florowska, Tomasz Florowski y Małgorzata Wroniak. "A Comparative Evaluation of the Structural and Biomechanical Properties of Food-Grade Biopolymers as Potential Hydrogel Building Blocks". Biomedicines 10, n.º 9 (28 de agosto de 2022): 2106. http://dx.doi.org/10.3390/biomedicines10092106.
Texto completoYamada, Masanori y Yoshihiro Kametani. "Preparation of Gellan Gum-Inorganic Composite Film and Its Metal Ion Accumulation Property". Journal of Composites Science 6, n.º 2 (25 de enero de 2022): 42. http://dx.doi.org/10.3390/jcs6020042.
Texto completoTesis sobre el tema "Gellan gum"
McGovern-Traa, Caroline. "Studies on gellan gum". Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/15337.
Texto completoGothard, Michelle Gina Elizabeth. "Functional properties of gellan gum". Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426116.
Texto completoCassanelli, Mattia. "Drying and rehydration of gellan gum gels". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8810/.
Texto completoDhameri, Sulaiman Ali A. "Rheological Properties and Decomposition Rates of Gellan Gum". University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1562780919692096.
Texto completoYang, Li. "Physicochemical properties of biodegradable/edible films made with gellan gum". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0026/MQ31662.pdf.
Texto completoTsiami, Amalia A. "Physiochemical properties of Gellan gum in gel and solution state". Thesis, University of East Anglia, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358455.
Texto completoGiavasis, Ioannis. "Physiological studies on the production of gellan gum by Sphingomonas paucimobilis". Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273429.
Texto completoBaawad, Abdullah. "Release of Low Acyl Gellan Gum in a Controlled Release System". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544823979777171.
Texto completoMahdi, Mohammed Hamzah. "Development of gellan gum fluid gel as modified release drug delivery systems". Thesis, University of Huddersfield, 2016. http://eprints.hud.ac.uk/id/eprint/30293/.
Texto completoPicone, Carolina Siqueira Franco 1983. "Formação de nanopartículas por associação de biopolímeros e surfactantes = Formation of nanoparticles by biopolymer - surfactant association". [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254194.
Texto completoTexto em português e inglês
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-20T12:57:32Z (GMT). No. of bitstreams: 1 Picone_CarolinaSiqueiraFranco_D.pdf: 4074904 bytes, checksum: 1a2779daa118fabb35ba241a8f6bf16f (MD5) Previous issue date: 2012
Resumo: As nano partículas possuem grande potencial para a liberação controlada de bioativos, porém ainda são pouco exploradas na área de alimentos. Neste trabalho foi estudada a formação de nanopartículas a partir da autoagregação de surfactantes, associação surfactante-polissacarídeo e complexação eletrostática entre diferentes polissacarídeos, no caso, quitosana e gelana. A compreensão das interações moleculares responsáveis pela formação das partículas e o conhecimento das variáveis que afetam sua formação permitem predizer e controlar suas propriedades. Tais interações dependem fortemente das características de cada macromolécula, como flexibilidade, estado conformacional e densidade de cargas que são diretamente afetadas pelas condições físico-químicas do meio como pH, força iônica e temperatura. Por isso, este trabalho foi dividido em três etapas. (I) Inicialmente foi avaliado o comportamento em solução dos polissacarídeos utilizados posteriormente para a formação de complexos. Os efeitos do pH e da temperatura nas características reológicas e no estado conformacional de soluções puras de gelana e quitosana foram estudados. A agregação da gelana foi mais sensível às alterações do meio que a quitosana. (II) Na segunda etapa, nanopartículas foram formadas por autoassociação de polissorbatos na presença de quitosana. A influência do comprimento da cauda hidrofóbica do surfactante e do pH do meio nas propriedades das partículas foi estudada por espalhamento de luz, reologia, condutivimetria e microscopia de luz polarizada. O tamanho e estrutura das partículas formadas pelo surfactante de menor cadeia hidrofóbica foram mais favoráveis à associação com a quitosana. O pH do meio (3,0 ou 6,7) não influenciou de maneira significativa as características das partículas. O efeito da concentração de quitosana na estrutura e tamanho de partículas foi analisado. Maiores concentrações levaram a viscosidades mais elevadas, impedindo a agregação das micelas e formando partículas menores. (III) No terceiro estudo, nanopartículas foram obtidas pela complexação eletrostática de gelana e quitosana. Os efeitos da razão de concentração de cada polissacarídeo, do tempo de estocagem a 25 °C e da presença de um surfactante nãoiônico (polissorbato) no tamanho, carga e quantidade de partículas formadas foram avaliados. Devido à menor densidade de carga e flexibilidade da gelana, maior quantidade deste polissacarídeo foi necessária para obtenção de partículas neutras. De forma geral, as partículas apresentaram aumento de tamanho ao longo das primeiras 100 horas após o preparo e não foram observadas mudanças significativas das propriedades das partículas devido à adição de surfactante. O método de preparo das amostras também foi estudado. Partículas preparadas pela mistura das soluções de polissacarídeos em dois passos foram consideravelmente maiores que as preparadas pela mistura em uma única etapa. Este trabalho confirmou a possibilidade de formação de nanopartículas promissoras para a encapsulação de bioativos em alimentos a partir da associação de biopolímeros e surfactantes, cujas propriedades poderiam ser moduladas em função da composição e condições de processo
Abstract: Nanoparticles are promising vehicles for bioactive delivery, but their potential has not been fully explored by the food industry. This work studied the formation of nanoparticles by self-assembly of surfactants, polysaccharide-surfactant association, and electrostatic complexes formed by different polysaccharides, especially chitosan and gellan gum. The knowledge of molecular interactions and the variables that affect particle formation allows predicting and controlling the properties of nanoparticles. These interactions depend on the characteristics of each macromolecule such as conformation, charge density and flexibility, which are affected by the physicol-chemical properties of the solution, such as pH, ionic strength and temperature. This work was divided in three parts: (I) Firstly it was studied the behaviour of each polysaccharide alone. The influence of the pH and temperature on the rheological properties and structural conformation of the pure gellan and chitosan samples was determined. Gellan aggregation was more strongly affected by such variables than chitosan. (II) In the second part, nanoparticles were obtained by polysorbate-chitosan association. The effect of the length of surfactant tail and the solution pH on the particle properties was studied by dynamic light scattering, rheological and conductivity measurements and polarizing microscopy. The size and structure of nanoparticles composed by the shorter surfactant were more appropriated to chitosan assembly. The pH (6.7 or 3.0) did not affect significantly the particle properties. The effects of chitosan concentration on particle structure and size were studied. Greater chitosan concentration led to smaller particles due to the increase in viscosity values which prevented micelles aggregation. (III) In the third study nanoparticles were produced by electrostatic complexation of chitosan and gellan gum. Particle size, charge density, stability and complexes number were evaluated as a function of polysaccharide concentration, chitosan:gellan ratio and the presence of a non-ionic surfactant. Due to the stiffness and low charge density of gellan gum, a greater amount of such polysaccharide was necessary to obtain neutral particles. Overall particles showed an increase in size during 100 hours of storage at 25 °C, but no significant changes on particle properties were observed due to surfactant addition. The methodology of particle preparation was also evaluated. Particles prepared by 2 mixing steps were markedly larger than those prepared by mixing polysaccharides in a single step (all together). This work showed that it is possible to produce nanoparticles with promising application on bioactive delivery by biopolymer-surfactant association, since their properties could be modulated as a function of composition and process conditions
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Libros sobre el tema "Gellan gum"
Nishinari, K., ed. Physical Chemistry and Industrial Application of Gellan Gum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48349-7.
Texto completoTsiami, Amalia A. Physiochemical properties of gellan gum in gel and solution state. Norwich: University of East Anglia, 1994.
Buscar texto completoCe lue gui hua jia : Zhu Geliang da zhuang. Taibei Shi: Yuan liu chu ban shi ye gu fen you xian gong si, 1992.
Buscar texto completoIndonesia) Festival Legu Gam Moloku Kie Raha (2011 Ternate. Geliat Legu gam Moloku kie raha: Pesona kie raha, pesona Nusantara. Ternate Tengah]: Dewan Pakar Kesultanan Ternate, 2011.
Buscar texto completoBergmann, Jörg R. y Christian Meyer, eds. Ethnomethodologie reloaded. Bielefeld, Germany: transcript Verlag, 2021. http://dx.doi.org/10.14361/9783839454381.
Texto completo(Firm), NutraSweet Kelco y Monsanto, eds. Alginates, xanthan gum & gellan gum seminar. Tadworth, Surrey: NutraSweet Kelco and Monsanto, 1998.
Buscar texto completoNayak, Amit Kumar y Saquib Hasnain. Gellan Gum As a Biomedical Polymer. Elsevier Science & Technology Books, 2022.
Buscar texto completoGellan Gum As a Biomedical Polymer. Elsevier Science & Technology, 2023.
Buscar texto completoNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer, 2013.
Buscar texto completoNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer London, Limited, 2003.
Buscar texto completoCapítulos de libros sobre el tema "Gellan gum"
Nussinovitch, A. "Gellan gum". En Hydrocolloid Applications, 63–82. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6385-3_4.
Texto completoGibson, W. "Gellan gum". En Thickening and Gelling Agents for Food, 227–49. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3552-2_10.
Texto completoGibson, W. y G. R. Sanderson. "Gellan gum". En Thickening and Gelling Agents for Food, 119–43. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-2197-6_6.
Texto completoSanderson, G. R. "Gellan Gum". En Food Gels, 201–32. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0755-3_6.
Texto completoBährle-Rapp, Marina. "Gellan Gum". En Springer Lexikon Kosmetik und Körperpflege, 219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4207.
Texto completoMonferrer, Albert, Claudia Cortés, Núria Cubero y Laura Gómez. "E-418 Gellan Gum". En Hydrocolloids in food product development, 105–11. Boca Raton, FL : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9781003019862-12.
Texto completoSanderson, George R. y David Ortega. "Alginates and Gellan Gum: Complementary Gelling Agents". En Food Hydrocolloids, 83–89. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_8.
Texto completoPanda, Pritish Kumar, Amit Verma, Shivani Saraf, Ankita Tiwari y Sanjay K. Jain. "Ionically Gelled Gellan Gum in Drug Delivery". En Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery, 55–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2271-7_3.
Texto completoNagpal, Shakti, Sunil Kumar Dubey, Vamshi Krishna Rapalli y Gautam Singhvi. "Pharmaceutical Applications of Gellan Gum". En Natural Polymers for Pharmaceutical Applications, 87–109. Includes bibliographical references and indexes.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429328299-4.
Texto completoVendrusculo, Claire T., José L. Pereira y Adilma R. P. Scamparini. "Gellan Gum: Production And Properties". En Food Hydrocolloids, 91–95. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_9.
Texto completoActas de conferencias sobre el tema "Gellan gum"
Ya´n˜ez-Ferna´ndez, J., J. A. Salazar-Montoya y E. G. Ramos-Rami´rez. "Effect of Mesquite Seed Gum on the Rheological Properties of Mixtures With Arabic and Gellan Gums". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32195.
Texto completoYu, Ilhan, Roland Chen y Samantha Grindrod. "Fabrication of Gellan Gum Tubular Structure Using Coaxial Needles: A Study on Wall Thickness and Encapsulation". En ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6614.
Texto completoTorres, Francisco R., Pedro H. L. Sanches, Hernane S. Barud y José Maurício A. Caiut. "Biocomposites of Eu3+-doped gellan gum and nanocellulose for 3D printing". En Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w1a.2.
Texto completoFerris, C. J. y M. in het Panhuis. "Diffusion of vitamin B12 in gellan gum-carbon nanotube hydrogels". En 2010 International Conference on Nanoscience and Nanotechnology (ICONN). IEEE, 2010. http://dx.doi.org/10.1109/iconn.2010.6045180.
Texto completoModrogan, Cristina. "REMOVAL OF MANGANESE FROM GROUNDWATER BY ADSORPTION ON GELLAN GUM/Fe3O4 COMPOSITE". En 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.091.
Texto completoReichel, Eric, Christopher M. Salinas, Clara Curiel-Lewandrowski y Russell S. Witte. "Transparent Gellan Gum as an Efficient Coupling Media For Photoacoustic Imaging Applications". En 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958558.
Texto completoK., Mithra, Santripti Khandai y Sidhartha S. Jena. "Effect of sodium dodecyl sulfate surfactant on rheological properties of gellan gum hydrogels". En DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980230.
Texto completoLoureiro, Jorge, Sonia P. Miguel, Victor P. Galvan-Chacon, David Patrocinio, Francisco M. Sanchez-Margallo, J. Blas Pagador, Maximiano P. Ribeiro y Paula Coutinho. "Swelling Analysis of Thermal and Chemical Crosslinked Konjac Glucomannan/Gellan Gum Cardiac Patch". En 2021 International Conference on e-Health and Bioengineering (EHB). IEEE, 2021. http://dx.doi.org/10.1109/ehb52898.2021.9657686.
Texto completoCortela, G., K. M. Lima, L. E. Maggi, C. Negreira y W. C. A. Pereira. "Evaluation of acoustic and thermal properties of gellan-gum phantom to mimic biological tissue". En 2015 Pan American Health Care Exchanges (PAHCE). IEEE, 2015. http://dx.doi.org/10.1109/pahce.2015.7173326.
Texto completoMuktar, Muhammad Zulhelmi, Laili bt Che Rose y Khairul Anuar Mat Amin. "Formulation and optimization of virgin coconut oil with Tween-80 incorporated in gellan gum hydrogel". En 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002238.
Texto completoInformes sobre el tema "Gellan gum"
Kuhnt, Matthias, Tilman Reitz y Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.132.
Texto completoKuhnt, Mathias, Tilman Reitz y Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.366.
Texto completo