Literatura académica sobre el tema "Gaseous"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gaseous".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Gaseous"

1

PEIMBERT, M. "Gaseous Nebulae: Physics of Thermal Gaseous Nebulae." Science 229, n.º 4714 (16 de agosto de 1985): 644. http://dx.doi.org/10.1126/science.229.4714.644.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gonchar, N. y M. Morkin. "A SENSITIVITY EVALUATION OF GAS-LIFT PROBE INCLUDED INTO CLADDING FAILURE DETECTION SYSTEM BY THE MODEL OF GASEOUS FISSION PRODUCT SOLUTION/DEGASSING INTO LEAD COOLANT". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, n.º 1 (26 de marzo de 2021): 135–44. http://dx.doi.org/10.55176/2414-1038-2021-1-135-144.

Texto completo
Resumen
Gas-lift probe is an element of cladding failure detection system of perspective lead cooled reactor. Its function is local measurement of gaseous fission product activity in the coolant and the most defected fuel assembly localization. In the coolant leaving the defected fuel assembly the specific activity of gaseous fission products is higher than the average one in the primary circuit. In the barbotage channel of gas-lift probe gaseous fission products diffuse through the bubble interface surface into the volume of the bubbles. The bubbles deliver gaseous fission product to interface surface in the separation volume. The gas enriched with radioactive gaseous fission product goes to measurement volume of the probe. The more significant the damage and the closer the defective fuel assembly is located to the probe input, the more gaseous fission product activity will be registered. The paper presents a model of gaseous activity transfer from cladding defect to probe measuring volume. The gaseous activity transfer is described on the basis of the inert gases dissolution/degassing processes in lead. The gas-lift probe sensitivity was estimated as the ratio of the entry velocity of gaseous activity into the measurement volume to the exit one into the coolant through fuel assemblies cladding defects. A gas-lift probe sensitivity for exposed fuel surface calculated as an example. Gaseous fission products with significant gamma radiation are considered. The calculation results are presented in the article.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Likal'ter, Alexander A. "Gaseous metals". Uspekhi Fizicheskih Nauk 162, n.º 7 (1992): 119. http://dx.doi.org/10.3367/ufnr.0162.199207c.0119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Likal'ter, Alexander A. "Gaseous metals". Soviet Physics Uspekhi 35, n.º 7 (31 de julio de 1992): 591–605. http://dx.doi.org/10.1070/pu1992v035n07abeh002249.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

van der Graaf, H. "Gaseous detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628, n.º 1 (febrero de 2011): 27–30. http://dx.doi.org/10.1016/j.nima.2010.06.280.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sugimoto, Daiichiro. "Gaseous Models". Symposium - International Astronomical Union 113 (1985): 207–18. http://dx.doi.org/10.1017/s0074180900147394.

Texto completo
Resumen
We can understand physics of self-gravitating system in terms of gaseous models in so far that their global natures and effects of self-gravity are concerned. Here summarized what are known in idealized gaseous models. They include gravothermal collapse/expansion in linear and non-linear regimes, and post-collapse evolution with gravothermal oscillation. Also discussed are their relations with discrete system and with treatment in statistical mechanics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ruskin, Keith J. "Gaseous Anomaly". Anesthesiology 88, n.º 6 (1 de junio de 1998): 1696. http://dx.doi.org/10.1097/00000542-199806000-00055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hao-Hui, Tang, Guo Jun-Jun, Wang Xiao-Lian y Xu Zi-Zong. "A new gaseous detector — micro mesh gaseous structure". Chinese Physics C 33, n.º 9 (25 de agosto de 2009): 777–80. http://dx.doi.org/10.1088/1674-1137/33/9/013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Blecha, Tomas, Vaclav Smitka, Michal Bodnar y Jiri Stulik. "Simultaneous Detection of NH3 and NO2 by Modified Impedance Spectroscopy in Sensors Based on Carbon Nanotubes". Energies 15, n.º 3 (25 de enero de 2022): 855. http://dx.doi.org/10.3390/en15030855.

Texto completo
Resumen
There are many gaseous substances that need to be monitored for possible damage to health or the environment. This requires many sensors. The solution to reducing the number of sensors is to use one sensor to detect several gaseous substances simultaneously. Efforts to simplify sensor systems thus lead to the use of a sensor with a suitable sensitive layer and to finding a suitable method of detecting individual gaseous substances within one sensor. The aim is to find a suitable method to detect various gaseous substances acting on the sensor. For this purpose, modified impedance spectroscopy in the high-frequency range is applied, where the scattering parameters of the sensor based on carbon nanotubes are measured under the action of NO2 and NH3 gases. For this method of detection of gaseous substances, a suitable sensor platform structure was designed to enable the measurement of the electrical properties of the sensor in the GHz range. Based on the obtained results, it is possible to use one sensor to detect different types of gaseous substances.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mautz, Karl E., Michael L. Parsons y Carleton B. Moore. "Application of a Gas Sampling Introduction System for Inductively Coupled Plasma Spectroscopy and Analyses of Various Plasma Gases". Applied Spectroscopy 41, n.º 2 (febrero de 1987): 219–26. http://dx.doi.org/10.1366/000370287774987001.

Texto completo
Resumen
An inductively coupled plasma spectrometer was modified for gaseous sample introduction. The system uses a gas proportioner utilizing rotameters to achieve sample gas concentrations and mixing with the sample argon gas. Modifications of instruments were performed to enhance stability and compatability of gaseous sample introduction. Instrument performance was characterized for optimization of spectral signals produced from plasma gases. Spectral analyses of gaseous samples including CF4, SF6, O2, N2, air, and mixtures of CF4-O2 and CF4-O2/N2 were performed. Identification of plasma gas and plasma-induced byproducts, both atomic and molecular, were determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Gaseous"

1

Combs, Roger J. "Gaseous diffusion in liquids". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76484.

Texto completo
Resumen
Diffusivity of nonreactive gases in liquids provides a means of interpreting structure in the liquid state. Structural models of the liquid state include Hildebrand's condensed gas model and Eyring's pseudo-lattice model. The former model predicts a linear dependence of diffusivity with temperature while the latter model predicts linear dependence of log(D) versus 1/T. The limited temperature dependent diffusivity data to date with a typical precision of ± 5% do not permit distinguishing which temperature dependence is more linear. However, the present investigation shows that diffusivities of one gas solute in two nonpolar liquids indirectly supports a linear diffusivity temperature dependence by a Graham's law like relation. At a fixed temperature this relation equates relative diffusivities to the square root of the inverse molecular weights of the respective liquids. Diffusion of gases into nonpolar liquids have previously been measured by two techniques: (1) a pseudo-steady state technique developed by Hildebrand with diffusion through multiple capillaries and (2) a method by Walkley with diffusion through an open tube. Each of these methods requires prior knowledge of solubility of the gas in the liquid. An apparatus is constructed which combines these methods into a single experiment. Simultaneous solution of the two equations which describe the combined experiment yields both the solubility and diffusion coefficient. Diffusivities and solubilities of nitrogen, argon and oxygen into liquids of carbon tetrachloride and benzene as well as oxygen into water have been studied. The results compare favorably with the Literature. The diffusion cell for this technique consists of a capillary disk, which is flooded with liquid. Gas is admitted into the space over the open solvent. With temperature and pressure constant, volume uptake of the gas in the solvent is monitored. Time-volume uptake data is evaluated by the two diffusion equations. Although the experiment is conceptually easy, a small gas volume change over a prolonged period of time poses problems in data collection and experiment control. The data collection and control is simplified by dedicating a Microcomputer Interfaced Data Acquisition System (MIDAS) to the experiment.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Noble, Anthony James. "Pion transfer in gaseous hydrogen". Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26016.

Texto completo
Resumen
The experiment consisted of stopping negative pions in a high pressure gas target to measure the transfer rate π-p → π-d in mixtures of H2, D2 and HD gas. The gamma rays from the decay of the π ⁰ in π -p → n + π ⁰ were detected in coincidence using two large sodium iodide crystals. The probability that a pion be transferred to a deuteron from a pionic hydrogen complex was described in terms of a phenomenological model parameterized by B and ∧. Fits to the data yielded B = 0.77 ±0.14 and ∧ = 0.21 ±0.04. These values implied that the hydrogen capture ratio in an equal mix of H2 and D2 was F(H₂D₂) = 0.45 ±0.01. The capture ratio for HD was measured to be F(HD) = 0.355 ±0.021. The ratio F(H₂D₂)/F(HD) indicated that there was likely to be internal transfer in the breakup of π-HD favouring the π-d complex at about a 60% level.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hunter, Ian Norman. "The viscosity of gaseous mixtures". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

McKenna, Fiona Christine. "Spectroscopic studies of gaseous nebulae". Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kirk, Martin. "Reactions of gaseous borane intermediates". Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305836.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Clarke, Elizabeth Diane. "Probabilistic models of gaseous dispersion". Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387651.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bremer, Malcolm Neal. "The gaseous environment of quasars". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281988.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ho, Minh Tuan. "Kinetic modeling of the transient flows of the single gases and gaseous mixtures". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4741/document.

Texto completo
Resumen
Un gaz à l'intérieur d’un microsystème ou d’un milieu poreux est dans un état hors équilibre, car le libre parcours moyen des molécules est comparable à la dimension caractéristique du milieu. Ce même état degaz, appelé raréfié, se retrouve en haute altitude ou dans un équipement de vide à basse pression. Ces gaz raréfiés suivent des types d’écoulements qui peuvent être décrits par des modèles cinétiques dérivés de l'équation de Boltzmann. Dans ce travail nous présentons les principaux modèles et leurs mises en oeuvre numériquepour la simulation des écoulements de gaz raréfiés. Parmi les modèles utilisés nous présentons les deux modèles complets de l'équation de Boltzmann, le modèle de Shakhov(S-model) pour un gaz monoatomique et le modèle de McCormack pour un mélange de gaz toujours monoatomiques. La méthode des vitesses discrètes est utilisée pour la discrétisation numérique dans l'espace des vitesses moléculaires et le schéma de type TVD est mis en œuvre dans l'espace physique. L’aspect original de ce travail se situe sur les régimes transitoires et, en particuliersur les comportements non-stationnaires des transferts de chaleur et de masse. Cependant, pour certaines configurations nous considérons uniquement les conditions stationnaires des écoulements et un schéma implicite est développé afin de réduire le coût de calcul. En utilisant ces approches numériques, nous présentons les résultats pour plusieurs types d’écoulements non-stationnaires, de gaz raréfiés monoatomiqueset de mélanges binaires de gaz monoatomiques
A gas inside the microsystems or the porous media is in its non-equilibrium state, due to the fact that the molecular mean free path is comparable to the characteristic dimension of the media. The same state of a gas, called rarefied, is found at high altitude or in the vacuum equipment working at low pressure. All these types of flow can be described by the kinetic models derived from the Boltzmann equation. This thesis presents the development of the numerical tools for the modeling and simulations of the rarefied gas flows. The two models of the full Boltzmann equation, the Shakhov model (S-model) for the single gas and the McCormack model for the gas mixture, are considered. The discrete velocity method is used to the numerical discretization in the molecular velocity space and the TVD-like scheme is implemented in the physical space. The main aspect of this work is centered around the transient properties of the gas flows and, especially, on the transient heat and mass transfer behaviors. However, for some configurations only steady-state solutions are considered and the implicit scheme is developed to reduce the computational cost. Using the proposed numerical approach several types of the transient rarefied single gas flows as well as the binary mixture of the monoatomic gases are studied
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Gal-Ed, Reuven. "Pulsating catalytic combustion of gaseous fuels". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15649.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Moss, Diane Patricia. "Gaseous ammonia exchange in wheat crops". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Gaseous"

1

Nettleton, Michael A. Gaseous Detonations. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3149-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Angelo, Joseph A. Gaseous matter. New York, NY: Facts on File, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

International Symposium on Gaseous Dielectrics. (6th 1990 Knoxville, Tenn.). Gaseous dielectrics VI. New York, N.Y: Plenum Press, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

1937-, Christophorou L. G. y James David R. 1948-, eds. Gaseous dielectrics VII. New York: Plenum, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

G, Christophorou L. y Olthoff James Kenneth 1958-, eds. Gaseous dielectrics IX. New York: London, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Christophorou, Loucas G. Gaseous Dielectrics VIII. Boston, MA: Springer US, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Christophorou, Loucas G. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Abbrescia, Marcello, Vladimir Peskov y Paulo Fonte. Resistive Gaseous Detectors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527698691.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Christophorou, Loucas G. y James K. Olthoff, eds. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0583-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Christophorou, Loucas G. y David R. James, eds. Gaseous Dielectrics VII. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Gaseous"

1

Clavin, Paul. "Gaseous Detonations". En Coherent Structures in Complex Systems, 182–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44698-2_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gillott, Cedric. "Gaseous Exchange". En Entomology, 449–65. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-4380-8_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Titov, Maxim. "Gaseous Detectors". En Handbook of Particle Detection and Imaging, 239–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13271-1_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dusseau, Jean-Yves, Patrick Duroselle y Jean Freney. "Gaseous Sterilization". En Russell, Hugo & Ayliffe's, 306–32. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118425831.ch15c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hilke, H. J. y W. Riegler. "Gaseous Detectors". En Particle Physics Reference Library, 91–136. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lengrand, Jean-Claude y Tatiana T. Elizarova. "Gaseous Microflows". En Microfluidics, 25–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118599839.ch2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gesser, H. D. "Gaseous Fuels". En Applied Chemistry: A Textbook for Engineers and Technologists, 93–113. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0531-0_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sugimoto, Daiichiro. "Gaseous Models". En Dynamics of Star Clusters, 207–18. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5335-2_23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hilke, H. J. "Gaseous Detectors". En Detectors for Particles and Radiation. Part 1: Principles and Methods, 72–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-03606-4_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hanby, Victor Ian. "Gaseous Fuels". En Combustion and Pollution Control in Heating Systems, 78–88. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2071-1_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Gaseous"

1

FRANCKE, TOM y VLADIMIR PESKOV. "MICROPATTERN GASEOUS DETECTORS". En Proceedings of the 42nd Workshop of the INFN ELOISATRON Project. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702951_0012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Va’vra, J. "Gaseous wire detectors". En Instrumentation in elementary particle physics. AIP, 1998. http://dx.doi.org/10.1063/1.55070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hessel, Randy P., Neerav Abani, Salvador M. Aceves y Daniel L. Flowers. "Gaseous Fuel Injection Modeling Using a Gaseous Sphere Injection Methodology". En Powertrain & Fluid Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-3265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kolbe, M. y Q. A. Baker. "Gaseous Explosions in Pipes". En ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71220.

Texto completo
Resumen
Gaseous explosions occurring in industrial piping and process systems have been recorded and documented since the early days of industrialization. Despite the efforts put forth by the academic and scientific communities in understanding these phenomena, these explosions are still occurring in industry. Often times, operating companies that suffered the explosions were unaware of the possibilities of explosion in their piping systems and as a result, installed control and safety systems were not adequate. The mitigation of gaseous explosions in pipes requires a basic understanding of combustion and detonation theory. These events are not confined to chemical and petroleum refining facilities; potentially, they can occur in any system where a flammable mixture can form in pipes. Gaseous explosions arise from the formation of a fuel and oxidizer mixture. Although many systems are known to carry both a fuel and an inert gas to dilute or suppress combustion, the flammability limits of this mixture are often a point of uncertainty. However, it must be understood that there are several factors that can lead a flammable mixture to a strong deflagration or potentially even a detonation. The following paper will discuss the basics of gaseous pipe explosions by defining the chemical and physical limits of both deflagrations and detonations. Examples of industrial accidents involving unique gaseous pipe explosions are provided in the paper as well as recommendations for prevention and mitigation of gaseous pipe explosions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Holtkämper, Thorsten. "Real-time gaseous phenomena". En the 2nd international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/602330.602335.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Graur, I. A. "Gaseous Flows in Microchannels". En RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941626.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chupp, T. E., R. A. Loveman, M. E. Wagshul, A. M. Bernstein, W. Fong, A. K. Thompson, D. Tieger et al. "Polarized gaseous 3He targets". En International symposium on high−energy spin physics. AIP, 1989. http://dx.doi.org/10.1063/1.38356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Park, Sang Il y Myoung Jun Kim. "Vortex fluid for gaseous phenomena". En the 2005 ACM SIGGRAPH/Eurographics symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1073368.1073406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Young, Colin G. "Electronic Gaseous Fuel Carburetion System". En 4th International Pacific Conference on Automotive Engineering. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871293.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jones, J., A. Over y G. Funk. "Microgravity gaseous combustion flight hardware". En 2001 Conference and Exhibit on International Space Station Utilization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-5046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Gaseous"

1

Kurita, C. H. Gaseous Nitrogen Heat Exchanger. Office of Scientific and Technical Information (OSTI), agosto de 1988. http://dx.doi.org/10.2172/1031178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Okoh, J. M., J. Pinion y S. Thiensatit. Gaseous phase coal surface modification. Office of Scientific and Technical Information (OSTI), mayo de 1992. http://dx.doi.org/10.2172/5129161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Russell, R. G. y M. G. Otey. Arsenic removal from gaseous streams. Office of Scientific and Technical Information (OSTI), noviembre de 1989. http://dx.doi.org/10.2172/5136273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Skone, Timothy J. Gaseous Diffusion Enrichment Facility, Decommissioning. Office of Scientific and Technical Information (OSTI), noviembre de 2010. http://dx.doi.org/10.2172/1509065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Skone, Timothy J. Gaseous Diffusion Uranium Enrichment, Operations. Office of Scientific and Technical Information (OSTI), noviembre de 2010. http://dx.doi.org/10.2172/1509066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hohorst, F. A. Generation of gaseous tritium standards. Office of Scientific and Technical Information (OSTI), septiembre de 1994. http://dx.doi.org/10.2172/10187803.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Turk, B. S., T. Merkel, A. Lopez-Ortiz, R. P. Gupta, J. W. Portzer, G. N. Krishnan, B. D. Freeman y G. K. Fleming. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), septiembre de 2001. http://dx.doi.org/10.2172/793531.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

B. S. Turk, R. P. Gupta, S. Gangwal, L. G. Toy, J. R. Albritton, G. Henningsen, P. Presler-Jur y J. Trembly. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), abril de 2008. http://dx.doi.org/10.2172/1027121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pinion, J. y J. Okoh. Gaseous phase surface modification of coal. Office of Scientific and Technical Information (OSTI), enero de 1990. http://dx.doi.org/10.2172/6677992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bliss, Mary. Gaseous Sulfate Solubility in Glass: Experimental Method. Office of Scientific and Technical Information (OSTI), noviembre de 2013. http://dx.doi.org/10.2172/1113600.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía