Literatura académica sobre el tema "Gas Turbine Cooling System"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gas Turbine Cooling System".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gas Turbine Cooling System"
Valenti, Michael. "Keeping it Cool". Mechanical Engineering 123, n.º 08 (1 de agosto de 2001): 48–52. http://dx.doi.org/10.1115/1.2001-aug-2.
Texto completoKhodak, E. A. y G. A. Romakhova. "Thermodynamic Analysis of Air-Cooled Gas Turbine Plants". Journal of Engineering for Gas Turbines and Power 123, n.º 2 (1 de agosto de 2000): 265–70. http://dx.doi.org/10.1115/1.1341204.
Texto completoZeitoun, Obida. "Two-Stage Evaporative Inlet Air Gas Turbine Cooling". Energies 14, n.º 5 (3 de marzo de 2021): 1382. http://dx.doi.org/10.3390/en14051382.
Texto completoIbrahim, Thamir K. "The Life Cycle Assessments of Gas Turbine using Inlet Air Cooling System". Tikrit Journal of Engineering Sciences 22, n.º 1 (1 de abril de 2015): 69–75. http://dx.doi.org/10.25130/tjes.22.1.07.
Texto completoKim, Kyoung Hoon, Kyoung Jin Kim y Chul Ho Han. "Comparative Thermodynamic Analysis of Gas Turbine Systems with Turbine Blade Film Cooling". Advanced Materials Research 505 (abril de 2012): 539–43. http://dx.doi.org/10.4028/www.scientific.net/amr.505.539.
Texto completoWang, Jian, Jiang Zhou Shu, Guo Hui Huang y Ai Peng Jiang. "Measurement and Control of the Gas Turbine Inlet Air Cooling System". Applied Mechanics and Materials 220-223 (noviembre de 2012): 439–42. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.439.
Texto completoKim, Kyoung Hoon, Kyoung Jin Kim y Hyung Jong Ko. "Effects of Wet Compression on Performance of Regenerative Gas Turbine Cycle with Turbine Blade Cooling". Applied Mechanics and Materials 224 (noviembre de 2012): 256–59. http://dx.doi.org/10.4028/www.scientific.net/amm.224.256.
Texto completoMohd Yunus, Salmi, Savisha Mahalingam, Abreeza Manap, Nurfanizan Mohd Afandi y Meenaloshini Satgunam. "Test-Rig Simulation on Hybrid Thermal Barrier Coating Assisted with Cooling Air System for Advanced Gas Turbine under Prolonged Exposures—A Review". Coatings 11, n.º 5 (10 de mayo de 2021): 560. http://dx.doi.org/10.3390/coatings11050560.
Texto completoKakaras, E., A. Doukelis, A. Prelipceanu y S. Karellas. "Inlet Air Cooling Methods for Gas Turbine Based Power Plants". Journal of Engineering for Gas Turbines and Power 128, n.º 2 (23 de septiembre de 2005): 312–17. http://dx.doi.org/10.1115/1.2131888.
Texto completoZhang, Han, Hua Chen, Chao Ma y Feng Guo. "INVESTIGATION OF CONJUGATED HEAT TRANSFER FOR A RADIAL TURBINE WITH IMPINGEMENT COOLING". Journal of Physics: Conference Series 2087, n.º 1 (1 de noviembre de 2021): 012037. http://dx.doi.org/10.1088/1742-6596/2087/1/012037.
Texto completoTesis sobre el tema "Gas Turbine Cooling System"
Son, Changmin. "Gas turbine impingement cooling system studies". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670200.
Texto completoLuque, Martínez Salvador G. "A fully-integrated approach to gas turbine cooling system research". Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558543.
Texto completoGillespie, David R. H. "Intricate internal cooling systems for gas turbine blading". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365831.
Texto completoLameen, Tariq M. H. "Development of a photovoltaic reverse osmosis demineralization fogging for improved gas turbine generation output". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2756.
Texto completoGas turbines have achieved widespread popularity in industrial fields. This is due to the high power, reliability, high efficiency, and its use of cheap gas as fuel. However, a major draw-back of gas turbines is due to the strong function of ambient air temperature with its output power. With every degree rise in temperature, the power output drops between 0.54 and 0.9 percent. This loss in power poses a significant problem for utilities, power suppliers, and co-generations, especially during the hot seasons when electric power demand and ambient temperatures are high. One way to overcome this drop in output power is to cool the inlet air temperature. There are many different commercially available means to provide turbine inlet cooling. This disserta-tion reviews the various technologies of inlet air cooling with a comprehensive overview of the state-of-the-art of inlet fogging systems. In this technique, water vapour is being used for the cooling purposes. Therefore, the water quality requirements have been considered in this thesis. The fog water is generally demin-eralized through a process of Reverse Osmosis (RO). The drawback of fogging is that it re-quires large amounts of demineralized water. The challenge confronting operators using the fogging system in remote locations is the water scarcity or poor water quality availability. However, in isolated hot areas with high levels of radiation making use of solar PV energy to supply inlet cooling system power requirements is a sustainable approach. The proposed work herein is on the development of a photovoltaic (PV) application for driv-ing the fogging system. The design considered for improved generation of Acaica power plant in Cape Town, South Africa. In addition, this work intends to provide technical infor-mation and requirements of the fogging system design to achieve additional power output gains for the selected power plant.
Chua, Khim Heng. "Experimental characterisation of the coolant film generated by various gas turbine combustor liner geometries". Thesis, Loughborough University, 2005. https://dspace.lboro.ac.uk/2134/12704.
Texto completoRoy, Rajkumar. "Adaptive search and the preliminary design of gas turbine blade cooling systems". Thesis, University of Plymouth, 1997. http://hdl.handle.net/10026.1/2664.
Texto completoKakade, Vinod. "Fluid Dynamic and Heat Transfer Measurements in Gas Turbine Pre-Swirl Cooling Systems". Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503370.
Texto completoFransen, Rémy. "LES based aerothermal modeling of turbine blade cooling systems". Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10012/1/fransen.pdf.
Texto completoIsaksson, Frida. "Pressure loss characterization for cooling and secondary air system components in gas turbines". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64528.
Texto completoA'Barrow, Chris. "Aerodynamic design of the coolant delivery system for an intercooled aero gas turbine engine". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13539.
Texto completoLibros sobre el tema "Gas Turbine Cooling System"
Stewart, William E. Design guide: Combustion turbine inlet air cooling systems. Atlanta, Ga: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1999.
Buscar texto completoGhodke, Chaitanya D. Gas Turbine Blade Cooling. Warrendale, PA: SAE International, 2018. http://dx.doi.org/10.4271/0768095069.
Texto completoGhodke, Chaitanya. Gas Turbine Blade Cooling. Warrendale, PA: SAE International, 2018. http://dx.doi.org/10.4271/pt-196.
Texto completoSandīpa, Datta y Ekkad Srinath 1958-, eds. Gas turbine heat transfer and cooling technology. 2a ed. Boca Raton, FL: Taylor & Francis, 2012.
Buscar texto completo1953-, Dutta Sandip y Ekkad Srinath 1958-, eds. Gas turbine heat transfer and cooling technology. New York: Taylor & Francis, 2000.
Buscar texto completoNaval Education and Training Program Management Support Activity (U.S.), ed. Gas turbine system technician (electrical) 3 & 2. [Pensacola, Fla.]: The Activity, 1988.
Buscar texto completoGonser, Robert W. Gas turbine system technician (electrical) 3 & 2. [Pensacola, Fla.]: The Activity, 1988.
Buscar texto completoAhern, John J. Gas turbine system technician (mechanical) 3 & 2. [Pensacola, Fla.]: The Center, 1985.
Buscar texto completoAl-Khusaibi, T. M. S. Gas turbine models for power system analysis. Manchester: UMIST, 1993.
Buscar texto completoAhern, John J. Gas turbine system technician (mechanical) 3 & 2. Pensacola, Fla: The Activity, 1987.
Buscar texto completoCapítulos de libros sobre el tema "Gas Turbine Cooling System"
Radchenko, Andrii, Lukasz Bohdal, Yang Zongming, Bohdan Portnoi y Veniamin Tkachenko. "Rational Designing of Gas Turbine Inlet Air Cooling System". En Lecture Notes in Mechanical Engineering, 591–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40724-7_60.
Texto completoLytvynenko, Oksana, Oleksandr Tarasov, Iryna Mykhailova y Olena Avdieieva. "Possibility of Using Liquid-Metals for Gas Turbine Cooling System". En Advances in Design, Simulation and Manufacturing III, 312–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50491-5_30.
Texto completoKonovalov, Dmytro, Halina Kobalava, Mykola Radchenko, Viktor Gorbov y Ivan Kalinichenko. "Development of the Gas-Dynamic Cooling System for Gas Turbine Over-Expansion Circuit". En Lecture Notes in Mechanical Engineering, 249–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06044-1_24.
Texto completoMert, Mehmet Selçuk, Mehmet Direk, Ümit Ünver, Fikret Yüksel y Mehmet İsmailoğlu. "Exergetic Analysis of a Gas Turbine with Inlet Air Cooling System". En Exergy for A Better Environment and Improved Sustainability 1, 1101–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_70.
Texto completoÜnver, Ümit, Mehmet Selçuk Mert, Mehmet Direk, Fikret Yüksel y Muhsin Kılıç. "Design of an Inlet Air-Cooling System for a Gas Turbine Power Plant". En Exergy for A Better Environment and Improved Sustainability 1, 1089–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_69.
Texto completoCho, Hyung Hee, Kyung Min Kim, Sangwoo Shin, Beom Seok Kim y Dong Hyun Lee. "Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine". En Fluid Machinery and Fluid Mechanics, 8–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_2.
Texto completoFirmansyah, Iman y Prabowo. "The Effect of Inlet Air Cooling to Power Output Enhancement of Gas Turbine". En Recent Advances in Renewable Energy Systems, 241–48. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1581-9_27.
Texto completoTalukdar, Kamaljyoti. "Use of Gas Turbine Operated by Municipal Solid Waste to Obtain Power and Cooling Assisted by Vapour Absorption Refrigeration System". En Integrated Approaches Towards Solid Waste Management, 79–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70463-6_8.
Texto completoSchobeiri, Meinhard T. "Gas Turbine Thermodynamic Process". En Gas Turbine Design, Components and System Design Integration, 31–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58378-5_2.
Texto completoSchobeiri, Meinhard T. "Gas Turbine Thermodynamic Process". En Gas Turbine Design, Components and System Design Integration, 33–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23973-2_2.
Texto completoActas de conferencias sobre el tema "Gas Turbine Cooling System"
Khodak, Evgeni A. y Gallna A. Romakhova. "Gas Turbine Model With Intensive Cooling". En ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-464.
Texto completoTanaka, T., A. Ishikawa, K. Aoyama, K. Kishimoto, Y. Yoshida, K. Toda, M. Atsumi y H. Kawamura. "Gas Turbine Inlet Air Cooling System With Liquid Air". En ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-449.
Texto completoGalitseisky, Boris M., A. V. Loburev y M. S. Cherny. "THE METHOD OPTIMIZATION OF GAS TURBINE BLADES COOLING SYSTEM". En International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1270.
Texto completoBunce, Richard H., Francisco Dovali-Solis y Robert W. Baxter. "Particulate Monitor for Gas Turbine Cooling Air". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51135.
Texto completoReichert, A. W. y M. Janssen. "Cooling and Sealing Air System in Industrial Gas Turbine Engines". En ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-256.
Texto completoNajar, F. A. y G. A. Harmain. "Novel Approach Towards Thrust Bearing Pad Cooling". En ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8165.
Texto completoYamazaki, Hiroyuki, Yoshiaki Nishimura, Masahiro Abe, Kazumasa Takata, Satoshi Hada y Junichiro Masada. "Development of Next Generation Gas Turbine Combined Cycle System". En ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56322.
Texto completoNilsson, Ulf E., Lars O. Lindqvist, Ingemar A. G. Eriksson y Jonas N. Hylén. "Experimental Investigation of GTX100 Combustor Liner Cooling System". En ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-539.
Texto completoEbenhoch, G. y T. M. Speer. "Simulation of Cooling Systems in Gas Turbines". En ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-049.
Texto completoSharma, Meeta y Onkar Singh. "Energy and Exergy Investigations Upon Tri-Generation Based Combined Cooling, Heating, and Power (CCHP) System for Community Applications". En ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4559.
Texto completoInformes sobre el tema "Gas Turbine Cooling System"
Ames, Forrest Edward y Sumanta Acharya. Thermally Effective and Efficient Cooling Technologies for Advanced Gas Turbine Systems. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1415043.
Texto completoLeylek, James H., D. K. Walters, William D. York, D. S. Holloway y Jeffrey D. Ferguson. Computational Film Cooling Methods for Gas Turbine Airfoils. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2002. http://dx.doi.org/10.21236/ada400186.
Texto completoCoulthard, Sarah M. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2005. http://dx.doi.org/10.21236/ada437128.
Texto completoMetz, Stephen D. y David L. Smith. Survey of Gas Turbine Control for Application to Marine Gas Turbine Propulsion System Control. Fort Belvoir, VA: Defense Technical Information Center, enero de 1989. http://dx.doi.org/10.21236/ada204713.
Texto completoBrown, D. R., S. Katipamula y J. H. Konynenbelt. A comparative assessment of alternative combustion turbine inlet air cooling system. Office of Scientific and Technical Information (OSTI), febrero de 1996. http://dx.doi.org/10.2172/211362.
Texto completoAcharya, Sumanta. A 3D-PIV System for Gas Turbine Applications. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada406716.
Texto completoLeCren, R., L. Cowell, M. Galica, M. Stephenson y C. Wen. Advanced coal-fueled industrial cogeneration gas turbine system. Office of Scientific and Technical Information (OSTI), julio de 1991. http://dx.doi.org/10.2172/5585871.
Texto completoLeCren, R. T., L. H. Cowell, M. A. Galica, M. D. Stephenson y C. S. When. Advanced coal-fueled industrial cogeneration gas turbine system. Office of Scientific and Technical Information (OSTI), junio de 1992. http://dx.doi.org/10.2172/6552127.
Texto completoLeCren, R. T., L. H. Cowell, M. A. Galica, M. D. Stephenson y C. S. Wen. Advanced coal-fueled industrial cogeneration gas turbine system. Office of Scientific and Technical Information (OSTI), julio de 1990. http://dx.doi.org/10.2172/5858228.
Texto completoPrice, Jeffrey. Advanced Materials for Mercury 50 Gas Turbine Combustion System. Office of Scientific and Technical Information (OSTI), septiembre de 2008. http://dx.doi.org/10.2172/991117.
Texto completo