Literatura académica sobre el tema "Gas stopping cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gas stopping cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gas stopping cell"
Droese, C., S. Eliseev, K. Blaum, M. Block, F. Herfurth, M. Laatiaoui, F. Lautenschläger et al. "The cryogenic gas stopping cell of SHIPTRAP". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 338 (noviembre de 2014): 126–38. http://dx.doi.org/10.1016/j.nimb.2014.08.004.
Texto completoWense, L. v. d., B. Seiferle, M. Laatiaoui y P. G. Thirolf. "The extraction of 229Th3+ from a buffer-gas stopping cell". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376 (junio de 2016): 260–64. http://dx.doi.org/10.1016/j.nimb.2015.12.049.
Texto completoSytema, A., J. E. van den Berg, O. Böll, D. Chernowitz, E. A. Dijck, J. O. Grasdijk, S. Hoekstra et al. "A gas cell for stopping, storing and polarizing radioactive particles". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 822 (junio de 2016): 77–81. http://dx.doi.org/10.1016/j.nima.2016.03.086.
Texto completoKaleja, O., B. Anđelić, K. Blaum, M. Block, P. Chhetri, C. Droese, Ch E. Düllmann et al. "The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 463 (enero de 2020): 280–85. http://dx.doi.org/10.1016/j.nimb.2019.05.009.
Texto completoEliseev, S. A., M. Block, A. Chaudhuri, Z. Di, D. Habs, F. Herfurth, H. J. Kluge et al. "Extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, n.º 2 (mayo de 2007): 479–84. http://dx.doi.org/10.1016/j.nimb.2007.01.291.
Texto completoRanjan, M., S. Purushothaman, T. Dickel, H. Geissel, W. R. Plass, D. Schäfer, C. Scheidenberger, J. Van de Walle, H. Weick y P. Dendooven. "New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation". EPL (Europhysics Letters) 96, n.º 5 (25 de noviembre de 2011): 52001. http://dx.doi.org/10.1209/0295-5075/96/52001.
Texto completoHuyse, Mark, Marius Facina, Yuri Kudryavtsev, Piet Van Duppen y ISOLDE collaboration. "Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 187, n.º 4 (abril de 2002): 535–47. http://dx.doi.org/10.1016/s0168-583x(01)01152-1.
Texto completoMatsuda, Yoshiyuki, Takahiro Shimizu y Daichi Imamura. "Effect of Formic Acid on Fuel Cell Performance for Automobile Applications". ECS Transactions 114, n.º 5 (27 de septiembre de 2024): 389–99. http://dx.doi.org/10.1149/11405.0389ecst.
Texto completoMatsuda, Yoshiyuki, Takahiro Shimizu y Daichi Imamura. "Effect of Formic Acid on Fuel Cell Performance for Automobile Applications". ECS Transactions 114, n.º 5 (27 de septiembre de 2024): 403–13. http://dx.doi.org/10.1149/11405.0403ecst.
Texto completoPellegriti, Maria Grazia, Agatino Musumarra, Enrico De Filippo, Marzio De Napoli, Alessia Di Pietro, Pierpaolo Figuera, Maria Fisichella et al. "Thick-target inverse kinematic method in order to investigate alpha-clustering in212Po". EPJ Web of Conferences 223 (2019): 01049. http://dx.doi.org/10.1051/epjconf/201922301049.
Texto completoTesis sobre el tema "Gas stopping cell"
Reiter, Moritz Pascal [Verfasser]. "Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell / Moritz Pascal Reiter". Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1080475966/34.
Texto completoDong, Wenling. "Developments for the laser spectroscopy of exotic nuclei with the S³ Low Energy Branch and the FRIENDS³ project". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP149.
Texto completoThis thesis presents a series of developments aimed to perform resonance-ionization laser spectroscopy on short-lived isotopes produced by the Super Separator Spectrometer (S³) of SPIRAL2 at GANIL and stopped in the gas cell of its Low Energy Branch (S³-LEB). This research focuses on two topics. Firstly, off-line laser spectroscopy measurements were performed on stable isotopes of erbium, the element of choice for the on-line commissioning of S³-LEB. These measurements were performed using the full S³-LEB setup along with the range of available Ti:sa laser systems, representing a proof of principle of the entire apparatus. To identify the optimal scheme for the forthcoming on-line experiments, different atomic transitions were studied by laser spectroscopy in the gas cell and in the gas jet. Isotope shifts were determined for the excitation and ionization steps. Field and mass-shift factors for the excitation steps were extracted from the isotope-shift data using King-plot analysis, and the associated experimental uncertainties in the two factors were discussed. Saturation-power measurements were carried out and the pressure broadening and shift coefficients were determined in the gas-cell environment. Additionally, hyperfine coefficients for the first excited state of the 408.8 nm transition were extracted from the high-resolution gas-jet spectroscopy with a spectral resolution of around 200 MHz. The 408.8 nm transition of erbium is proposed as a suitable candidate for day-one experiments at S³. Secondly, simulations were performed to develop a future generation of the S³-LEB gas cell optimized for the study of short-lived isotopes, featuring a reduced extraction time and using a universal neutralization mechanism. In this gas cell, fast ion extraction is achieved through a combination of electrical field and gas flow. Simulations were performed with the state-of-the-art software for capturing the multiphysics aspect, including the gas flow, the electrostatic field, the ion transport in high pressure and the dynamics of electrons generated by the ionization of the gas. Based on these simulations, an optimized gas-cell prototype has been designed, taking into account the extraction time, the efficiency, as well as the time available for neutralization
Actas de conferencias sobre el tema "Gas stopping cell"
Omeke, J., S. Misra y A. Retnanto. "Fusing Data-Driven Insights with Physics for Underground Hydrogen Storage". En ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222710-ms.
Texto completo