Artículos de revistas sobre el tema "Gas generation"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Gas generation.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Gas generation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Devine, K. "Gas in Electricity Generation". Energy Exploration & Exploitation 13, n.º 2-3 (mayo de 1995): 149–57. http://dx.doi.org/10.1177/0144598795013002-305.

Texto completo
Resumen
Gas is New Zealand's major thermal fuel for electricity generation. This paper describes what influences the volumes of gas burnt by ECNZ, and forecasts future gas demands for electricity generation. It also reviews the uncertainties associated with these forecasts and likely competition in building new electricity generating stations and outlines the strategy now being formulated to accommodate them. Because ECNZ's generation system is hydro-based, relatively small rapid changes in hydrological conditions can significantly affect the amount of gas used. This situation will change over time with major increases in thermal generation likely to be needed over the next 20 years. However, there are considerable uncertainties on gas supply and electricity demand levels in the long run, which will complicate investment and fuel decisions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Giunta, G., R. Vernazza, R. Salerno, A. Ceppi, G. Ercolani y M. Mancini. "Hourly weather forecasts for gas turbine power generation". Meteorologische Zeitschrift 26, n.º 3 (14 de junio de 2017): 307–17. http://dx.doi.org/10.1127/metz/2017/0791.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

TAKATA, Kazumasa, Keizo TSUKAGOSHI, Junichiro MASADA y Eisaku ITO. "A102 DEVELOPMENT OF ADVANCED TECHNOLOGIES FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–29_—_1–34_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-29_.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Saitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura y Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Moring, Frederick. "LDCs and distributed generation developments". Natural Gas 17, n.º 3 (10 de enero de 2007): 30–32. http://dx.doi.org/10.1002/gas.3410170307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Burnby, M. W. "Gas for electricity generation". Power Engineering Journal 7, n.º 6 (1993): 236. http://dx.doi.org/10.1049/pe:19930061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Vickers, Frank. "Gas marketing opportunities in electric power generation". Natural Gas 13, n.º 7 (9 de enero de 2007): 13–17. http://dx.doi.org/10.1002/gas.3410130704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Smith, William H. "Distributed electric generation to increase gas markets". Natural Gas 17, n.º 2 (10 de enero de 2007): 29–32. http://dx.doi.org/10.1002/gas.3410170208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Aweh, Amanda. "Enabling the Next Generation Smart Grid". Climate and Energy 38, n.º 2 (10 de agosto de 2021): 20–23. http://dx.doi.org/10.1002/gas.22247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chapman, Bruce R. "Pricing Distributed Generation: Challenges and Alternatives". Natural Gas & Electricity 33, n.º 8 (15 de febrero de 2017): 1–7. http://dx.doi.org/10.1002/gas.21965.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Cartwright, Echo D. "Rethinking Energy Generation, Siting, and Equity". Climate and Energy 37, n.º 2 (17 de agosto de 2020): 15–16. http://dx.doi.org/10.1002/gas.22190.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Johnson, N. G. "COMPARATIVE FUNDING CONSEQUENCES OF LARGE VERSUS SMALL GAS-FIRED POWER GENERATION UNITS". APPEA Journal 35, n.º 1 (1995): 719. http://dx.doi.org/10.1071/aj94046.

Texto completo
Resumen
Gas producers are increasingly looking to privately-owned gas-fired power generation as a major growth market to support the development of new fields being discovered across Australia.Gas-fired generating technology is more environmentally friendly than coal-fired power stations, has lower unit capital costs and has higher efficiency levels. With the recent downward trends in gas prices for power generation (especially in Western Australia) it is likely that gas will indeed be the consistently preferred fuel for generation in Australia.Gas producers should be sensitive to the different financial and risk characteristics of the potential markets represented by large versus small gas-fired private power stations. These differences are exaggerated by the much sharper focus given by the private sector to quantifying risk and to its allocation to the parties best able to manage it.The significant commercial differences between classes of generation projects result in gas producers themselves being exposed to diverging risk profiles through their gas supply contracts with generating companies. Selling gas to larger generation units results in gas suppliers accepting proportionately (i.e. not just pro-rata to the larger installed capacity) higher levels of financial risk. Risk arises from the higher probability of a project not being completed, from the increased size of penalty payments associated with non-delivery of gas and from the rising level of competition from competing gas suppliers.A conclusion is that gas producers must fully understand the economics and risks of their potential electricity customers. Full financial analysis will materially help the gas supplier in subsequent commercial gas contract negotiations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sivertson, Lorne. "Hydroelectric Generation: Hydroelectric Projects-Risks and Management". Natural Gas & Electricity 30, n.º 2 (22 de agosto de 2013): 14–18. http://dx.doi.org/10.1002/gas.21710.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

MacDonald, John. "Electric Generation: Elements of Determining Site Suitability". Natural Gas & Electricity 31, n.º 4 (23 de octubre de 2014): 17–21. http://dx.doi.org/10.1002/gas.21795.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Smead, Richard G. "The Future of Natural Gas in Power Generation". Natural Gas & Electricity 36, n.º 8 (11 de febrero de 2020): 26–32. http://dx.doi.org/10.1002/gas.22163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hornby, Rick. "Competitive residential markets require gas supply, generation services". Natural Gas 17, n.º 4 (10 de enero de 2007): 15–22. http://dx.doi.org/10.1002/gas.3410170404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

TAMANUKI, Shigeru. "Power generation using natural gas." Journal of the Fuel Society of Japan 67, n.º 8 (1988): 662–75. http://dx.doi.org/10.3775/jie.67.8_662.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Koch, H. y T. Hillers. "Second generation gas-insulated line". Power Engineering Journal 16, n.º 3 (1 de junio de 2002): 111–16. http://dx.doi.org/10.1049/pe:20020303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Mel'nikov, P. I., V. P. Mel'nikov, V. P. Tsarev, B. V. Degtyarev, N. B. Mizulina, A. P. Popov, A. I. Bereznyakov y A. M. Svechnikov. "NATURAL GAS GENERATION IN PERMAFROST". International Geology Review 31, n.º 3 (marzo de 1989): 317–26. http://dx.doi.org/10.1080/00206818909465884.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Chakma, Sumedha y Shashi Mathur. "Modelling gas generation for landfill". Environmental Technology 38, n.º 11 (27 de septiembre de 2016): 1435–42. http://dx.doi.org/10.1080/09593330.2016.1231226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Haiwei Du, Haiwei Du y Nan Yang Nan Yang. "Effect of gas species on THz generation from two-color lasers". Chinese Optics Letters 11, n.º 6 (2013): 063202–63204. http://dx.doi.org/10.3788/col201311.063202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Echikson, Thomas G. "Heavy Impact of Recent Regulation on Generation Permitting". Natural Gas & Electricity 29, n.º 12 (20 de junio de 2013): 1–8. http://dx.doi.org/10.1002/gas.21697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Mickum, Luke A. "Operational details critical to serving electric generation market". Natural Gas 9, n.º 12 (20 de agosto de 2008): 7–10. http://dx.doi.org/10.1002/gas.3410091203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

KADO, Kunihiro, Takashi NAKAHARA, Tomohiro TAKEO y Toshiaki KITAGAWA. "A202 COMBUSTION PROPERTIES OF COAL GASIFICATION GAS FOR IGCC POWER GENERATION SYSTEM WITH CO_2 CAPTURE(Gas Turbine-4)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–7_—_2–12_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-7_.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Smead, Richard G. "Natural Gas Matters: State of Play in the Natural Gas Generation Market". Natural Gas & Electricity 30, n.º 4 (18 de octubre de 2013): 25–28. http://dx.doi.org/10.1002/gas.21725.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Galiullina, S. D., M. G. Bresler, A. R. Suleimanov, D. I. Gerasimova y E. A. Safina. "IMPROVING THE EFFICIENCY OF YOUNG SPECIALISTS’ ADAPTATION IN OIL AND GAS COMPANIES". Bulletin USPTU Science education economy Series economy 3, n.º 41 (2022): 7–19. http://dx.doi.org/10.17122/2541-8904-2022-3-41-7-19.

Texto completo
Resumen
Generation Z is the first generation of the information/digital society formation stage that has specific features in the cognitive field. Representatives of Generation Z experience certain difficulties in interacting with older generations both during their studies and during adaptation in production teams. Traditional socialization tools in educational and scientific sphere have low efficiency, since Generation Z representatives have higher skills and competencies in the field of digital technologies, and therefore they master new technologies faster. At the same time, they have a different motivation to work and different priorities in comparison to older generations. On the one hand, this makes it difficult for representatives of generation Z to adapt to the teams of structural divisions of companies where there is an established structure of communications and at the same time, companies need new employees, because the quantity of specialists from generation Z will be grew. The purpose of this study is to identify the specific features of the generation and create a technology that allows optimizing the work of Generation Z representatives in a team based on interaction and cooperation. The authors identify the problem and at the same time offer a solution in the form of digital technology. The technology proposed by the authors, based on which a digital service for predicting effective teams based on artificial intelligence will be developed, will allow timely identification of the shortcomings of emotional capital and purposefully develop various types of individual soft skills to reduce the effectiveness of teamwork. Thus, the adaptation of representatives of generation Z will be carried out with greater efficiency, and the risk of intergenerational conflicts will be significantly reduced. This approach can be presented as a new one, providing for the mutual adaptation of older generations with an established structure of communications and generation Z, who have unique competencies in the field of digital technologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Olsen, Susanne y Edward Gobina. "GTL synthesis gas generation membrane for monetizing stranded gas". Membrane Technology 2004, n.º 6 (junio de 2004): 5–10. http://dx.doi.org/10.1016/s0958-2118(04)00161-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ohira, Shin-Ichi, Kiyoshi Someya y Kei Toda. "In situ gas generation for micro gas analysis system". Analytica Chimica Acta 588, n.º 1 (abril de 2007): 147–52. http://dx.doi.org/10.1016/j.aca.2007.01.069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

McConnell, Chai H. y Christian Dorgelo. "Some economic estimates of gas-fired power generation in a carbon constrained Australia". APPEA Journal 59, n.º 2 (2019): 647. http://dx.doi.org/10.1071/aj18093.

Texto completo
Resumen
The future of Australia’s electricity industry has resulted in significant debate about the mix of electricity generating technologies. The Finkel Review and ensuing National Electricity Guarantee policy discussion have revealed divisions between key stakeholders over the future generating mix between renewable and fossil fuel power generation options. A portfolio of technologies will be required, including the need for gas-fired power generation with and without carbon capture and storage (CCS), to provide dispatchable synchronous electricity. Gas Vision 2050 has stated that CCS, along with biogas and hydrogen, will be one of the three transformational technologies affecting the gas industry going forward. Through the use of a techno-economic model, the costs for a hypothetical new-build gas-fired power plant in the Hunter Valley with and without CCS were estimated. The model is cross referenced with other authoritative publications including the CO2CRC Australian Power Generation Technology Report. The model considers the base-case scenario and sensitivity analysis of key cost drivers such as the domestic gas price and labour. The results of the model will enable key energy and gas industry stakeholders to make informed decisions about the vital role of gas as a power generation technology in Australia to deliver dispatchable synchronous electricity in a carbon constrained environment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Spruiell, Joe W. "Gas positioned to increase role in Texas power generation". Natural Gas 15, n.º 4 (9 de enero de 2007): 11–15. http://dx.doi.org/10.1002/gas.3410150404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Geise, Bill. "Gas transmission for power generation in Dallas/Fort worth". Natural Gas 17, n.º 4 (10 de enero de 2007): 9–14. http://dx.doi.org/10.1002/gas.3410170403.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Bekki, Kenji. "Physical processes for the origin of globular clusters with multiple stellar populations". Proceedings of the International Astronomical Union 10, H16 (agosto de 2012): 253–54. http://dx.doi.org/10.1017/s1743921314005651.

Texto completo
Resumen
AbstractWe numerically investigate the formation processes of globular clusters (GCs) in gas-rich dwarf galaxies at high redshifts. Our particular focus is on how the first and second generations of stars can be formed from high-density gas clouds in dwarf galaxies. We find that massive stellar clumps first form from massive gas clumps that are developed from local gravitational instability in gas-rich dwarfs. These stellar clumps with masses larger than ~ 2 × 106 M⊙ can finally become the first generation of stars in GCs. After supernova explosion expels the remaining gas in the clumps, stars can form from eject of AGB stars that is accreted onto the central regions of the clumps (i.e., first generation of stars). The compact clusters of these stars have much higher densities and a significant amount of internal rotation (~ 5 km s−1) in comparison with the first generation and thus correspond to the second generation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Till, Dustin, Richard Allan y Erika Anderson. "Questions Surround Regulating Generation Under Obama's Climate Action Plan". Natural Gas & Electricity 30, n.º 2 (22 de agosto de 2013): 1–9. http://dx.doi.org/10.1002/gas.21708.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Campbell, Becky y Eran Mahrer. "Community Solar Is Potential Resolution for Distributed-Generation Challenges". Natural Gas & Electricity 32, n.º 8 (18 de febrero de 2016): 9–15. http://dx.doi.org/10.1002/gas.21889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bennett, Porter B. "Changes and Marketing Requirements of the Electric Generation Market". Natural Gas 10, n.º 3 (20 de agosto de 2008): 1–7. http://dx.doi.org/10.1002/gas.3410100302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Marcoux, Michel. "Summer electric generation capacity: Don't stop thinking about tomorrow". Natural Gas 17, n.º 5 (10 de enero de 2007): 27–29. http://dx.doi.org/10.1002/gas.3410170506.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Roshan, Manimel Wadu Saminda, Yasunori Mitani, Masayuki Watanabe y Yaser Qudiah. "Optimization of Fluctuation Suppression in Photovoltaic Power Generation Using Gas Cogeneration System". Journal of Clean Energy Technologies 4, n.º 6 (2016): 420–23. http://dx.doi.org/10.18178/jocet.2016.4.6.324.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Lee, Kwangjin, Sungeun Kim, Heejin Kang, Sangmin Choi y Taehyung Kim. "A205 COMPARATIVE EVALUATION OF OXY-COAL POWER GENERATION SYSTEMS(Gas Turbine-5)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–25_—_2–30_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-25_.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Fattah, R. Abdul, J. M. Verweij, N. Witmans y J. H. ten Veen. "Reconstruction of burial history, temperature, source rock maturity and hydrocarbon generation in the northwestern Dutch offshore". Netherlands Journal of Geosciences - Geologie en Mijnbouw 91, n.º 4 (diciembre de 2012): 535–54. http://dx.doi.org/10.1017/s0016774600000378.

Texto completo
Resumen
Abstract3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the input geological model. An updated and refined palaeo water depth curve and newly refined sediment water interface temperatures (SWIT) are used in the simulation. Basal heat flow is calculated using tectonic models. Two main source rock intervals are defined in the model, Westphalian coal seams and pre-Westphalian shales, which include Namurian and Dinantian successions. The modelling shows that the pre-Westphalian source rocks entered the hydrocarbon generation window in the Late Carboniferous. In the southern and central parts of the study area, the Namurian started producing gas in the Permian. In the north, the Dinantian source rocks appear to be immature. Lower Westphalian sediments started generating gas during the Upper Triassic. Gas generation from Westphalian coal seams increased during the Paleogene and continues in present-day. This late generation of gas from Westphalian coal seams is a likely source for gas accumulations in the area.Westphalian coals might have produced early nitrogen prior to or during the main gas generation occurrence in the Paleogene. Namurian shales may be a source of late nitrogen after reaching maximum gas generating phase in the Triassic. Temperatures reached during the Mid Jurassic were sufficiently high to allow the release of non-organic nitrogen from Namurian shales.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Qian, Cheng, Yefei Wang, Zhen Yang, Zhengtian Qu, Mingchen Ding, Wuhua Chen y Zhenpei He. "A novel in situ N2 generation system assisted by authigenic acid for formation energy enhancement in an oilfield". RSC Advances 9, n.º 68 (2019): 39914–23. http://dx.doi.org/10.1039/c9ra07934c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Smith, William H. "Selling to Electric-Generation Markets: Natural Gas Pros & Cons". Natural Gas 8, n.º 10 (20 de agosto de 2008): 26–28. http://dx.doi.org/10.1002/gas.3410081010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Hollis, Sheila S. "Gas opportunities in power generation in Mexico: The legal backdrop". Natural Gas 13, n.º 10 (9 de enero de 2007): 11–15. http://dx.doi.org/10.1002/gas.3410131004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

SANTHOSH, M., ASHOK ALSHIYA SANKARI, J. SHIDHARTH y V. K. SANTHOSH. "POWER GENERATION MODULE FROM EXHAUST GAS". i-manager’s Journal on Electrical Engineering 13, n.º 3 (2020): 10. http://dx.doi.org/10.26634/jee.13.3.16740.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lu, Chia-Jung, William H. Steinecker, Wei-Cheng Tian, Michael C. Oborny, Jamie M. Nichols, Masoud Agah, Joseph A. Potkay et al. "First-generation hybrid MEMS gas chromatograph". Lab on a Chip 5, n.º 10 (2005): 1123. http://dx.doi.org/10.1039/b508596a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Baschky, Michael C., John R. Sowa, Paul G. Gassman y Steven R. Kass. "Gas-phase generation of trifluoromethyl cyclopentadienides". Journal of the Chemical Society, Perkin Transactions 2, n.º 2 (1996): 213. http://dx.doi.org/10.1039/p29960000213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Buckingham, Richard A. "Middle Ear Gas Generation in Myringoplasties". Annals of Otology, Rhinology & Laryngology 99, n.º 5 (mayo de 1990): 335–36. http://dx.doi.org/10.1177/000348949009900503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

ORTMANN, ROBERT A. y JOSEPH A. WOERNER. "SHIPBOARD GAS GENERATION USING MOLECULAR SIEVES". Naval Engineers Journal 97, n.º 1 (enero de 1985): 58–63. http://dx.doi.org/10.1111/j.1559-3584.1985.tb02053.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Allakhverdiev, K., F. Ismailov, L. Kador y M. Braun. "Second-harmonic generation in GaS crystals". Solid State Communications 104, n.º 1 (octubre de 1997): 1–3. http://dx.doi.org/10.1016/s0038-1098(97)00269-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Buryan, Petr. "Gas generation during Cypris clay expansion". Journal of Thermal Analysis and Calorimetry 134, n.º 2 (30 de abril de 2018): 981–92. http://dx.doi.org/10.1007/s10973-018-7239-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wäscher, Thomas. "Generation of slanted gas-filled icicles". Journal of Crystal Growth 110, n.º 4 (abril de 1991): 942–46. http://dx.doi.org/10.1016/0022-0248(91)90653-m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía