Literatura académica sobre el tema "Gamma_ray"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gamma_ray".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Gamma_ray"

1

M., Manar, Mohamed S., Sherief Hashima, Imbaby I., Mohamed Amal-Eldin y Nesreen I. "Hardware Implementation for Pileup Correction Algorithms in Gamma_Ray Spectroscopy". International Journal of Computer Applications 176, n.º 6 (17 de octubre de 2017): 43–48. http://dx.doi.org/10.5120/ijca2017915634.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nath, Rajat Kanti. "A note on super integral rings". Boletim da Sociedade Paranaense de Matemática 38, n.º 4 (10 de marzo de 2019): 213–18. http://dx.doi.org/10.5269/bspm.v38i4.39637.

Texto completo
Resumen
Let $R$ be a nite non-commutative ring with center $Z(R)$. The commuting graph of $R$, denoted by $\Gamma_R$, is a simple undirected graph whose vertex set is $R\setminus Z(R)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. Let$\Spec(\Gamma_R), \L-Spec(\GammaR)$ and $\Q-Spec(\GammaR)$ denote the spectrum, Laplacian spectrum and signless Laplacian spectrum of $\Gamma_R$ respectively. A nite non-commutative ring $R$ is called super integral if $\Spec(\Gamma_R), \L-Spec(Gamma_R)$ and $\Q-Spec(\Gamma_R)$ contain only integers. In this paper, we obtain several classes of super integral rings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

GONZÁLEZ-SÁNCHEZ, JON y FRANCESCA SPAGNUOLO. "A BOUND ON THE p-LENGTH OF P-SOLVABLE GROUPS". Glasgow Mathematical Journal 57, n.º 1 (26 de agosto de 2014): 167–71. http://dx.doi.org/10.1017/s0017089514000196.

Texto completo
Resumen
AbstractLet G be a finite p-solvable group and P a Sylow p-subgroup of G. Suppose that $\gamma_{\ell (p-1)}(P)\subseteq \gamma_r(P)^{p^s}$ for ℓ(p−1) < r + s(p − 1), then the p-length is bounded by a function depending on ℓ.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sheikholeslami, Seyed Mahmoud, Nasrin Dehgardi, Lutz Volkmann y Dirk Meierling. "The Roman bondage number of a digraph". Tamkang Journal of Mathematics 47, n.º 4 (30 de diciembre de 2016): 421–31. http://dx.doi.org/10.5556/j.tkjm.47.2016.2100.

Texto completo
Resumen
Let $D=(V,A)$ be a finite and simple digraph. A Roman dominating function on $D$ is a labeling $f:V (D)\rightarrow \{0, 1, 2\}$ such that every vertex with label 0 has an in-neighbor with label 2. The weight of an RDF $f$ is the value $\omega(f)=\sum_{v\in V}f (v)$. The minimum weight of a Roman dominating function on a digraph $D$ is called the Roman domination number, denoted by $\gamma_{R}(D)$. The Roman bondage number $b_{R}(D)$ of a digraph $D$ with maximum out-degree at least two is the minimum cardinality of all sets $A'\subseteq A$ for which $\gamma_{R}(D-A')>\gamma_R(D)$. In this paper, we initiate the study of the Roman bondage number of a digraph. We determine the Roman bondage number in several classes of digraphs and give some sharp bounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kannaiyan, Ashok, Sekarapandian Natarajian y B. R. Vinoth. "Stability of a laminar pipe flow subjected to a step-like increase in the flow rate". Physics of Fluids, 15 de mayo de 2022. http://dx.doi.org/10.1063/5.0090337.

Texto completo
Resumen
We perform the linear modal stability analysis of a pipe flow subjected to a step-like increment in the flow rate from a steady initial flow with flow rate, $Q_i$, to a final flow with flow rate, $Q_f$, at the time, $t_c$. A step-like increment in the flow rate induces a non-periodic unsteady flow for a definite time interval. The ratio, $\Gamma_a={Q}_i/{Q}_f$, parameterizes the increase in the flow rate, and it ranges between $0$ to $1$. The stability analysis for a pipe flow subjected to a step-like increment in the flow rate from the steady laminar flow ($\Gamma_a&gt;0$) is not reported in the literature. The present work investigates the effect of varying $\Gamma_a$ on the stability characteristics of an unsteady pipe flow. The step-like increment in the flow rate for $0\leq\Gamma_a\leq0.72$ induces a viscous type instability for a definite duration and the flow is modally unstable. The non-axisymmetric disturbance with azimuthal wavenumber, $m=1$ is the most unstable mode. The flow is highly-unstable for $\Gamma_a=0$ and the flow becomes less unstable with an increase in $\Gamma_a$. The flow becomes stable before it attains the steady-state condition for all $\Gamma_a$.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cools, Filip y Marta Panizzut. "The Gonality Sequence of Complete Graphs". Electronic Journal of Combinatorics 24, n.º 4 (6 de octubre de 2017). http://dx.doi.org/10.37236/6876.

Texto completo
Resumen
The gonality sequence $(\gamma_r)_{r\geq1}$ of a finite graph/metric graph/algebraic curve comprises the minimal degrees $\gamma_r$ of linear systems of rank $r$. For the complete graph $K_d$, we show that $\gamma_r = kd - h$ if $r<g=\frac{(d-1)(d-2)}{2}$, where $k$ and $h$ are the uniquely determined integers such that $r = \frac{k(k+3)}{2} - h$ with $1\leq k\leq d-3$ and $0 \leq h \leq k $. This shows that the graph $K_d$ has the gonality sequence of a smooth plane curve of degree $d$. The same result holds for the corresponding metric graphs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Favaron, Odile. "Global Alliances and Independent Domination in Some Classes of Graphs". Electronic Journal of Combinatorics 15, n.º 1 (29 de septiembre de 2008). http://dx.doi.org/10.37236/847.

Texto completo
Resumen
A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$. The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one. The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$. We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$. We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree. We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Najafi, Hamed. "An extension of the van Hemmen–Ando norm inequality". Glasgow Mathematical Journal, 3 de agosto de 2022, 1–7. http://dx.doi.org/10.1017/s0017089522000155.

Texto completo
Resumen
Abstract Let $C_{\||.\||}$ be an ideal of compact operators with symmetric norm $\||.\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ , then \begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ . In particular, if ${\rm{sp}}(S), {\rm{sp}}(T) \subseteq \Gamma_a$ , then \begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fuidah, Quthrotul Aini, Dafik Dafik y Ermita Rizki Albirri. "Resolving Domination Number pada Keluarga Graf Buku". CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS 1, n.º 2 (28 de diciembre de 2020). http://dx.doi.org/10.25037/cgantjma.v1i2.44.

Texto completo
Resumen
All graph in this paper are members of family of book graph. Let $G$ is a connnected graph, and let $W = \{w_1,w_2,...,w_i\}$ a set of vertices which is dominating the other vertices which are not element of $W$, and the elements of $W$ has a different representations, so $W$ is called resolving dominating set. The minimum cardinality of resolving dominating set is called resolving domination number, denoted by $\gamma_r(G)$. In this paper we obtain the exact values of resolving dominating for family of book graph.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jiang, Hechuan, Dongpu Wang, Yu Cheng, Huageng Hao y Chao Sun. "Effects of ratchet surfaces on inclined thermal convection". Physics of Fluids, 27 de diciembre de 2022. http://dx.doi.org/10.1063/5.0130492.

Texto completo
Resumen
The influence of ratchets on inclined convection is explored within a rectangular cell (aspect ratio $\Gamma_{x}=1$ and $\Gamma_y=0.25$) by experiments and simulations. The measurements are conducted over a wide range of tilting angles ($0.056\leq\beta\leq \pi/2\,\si{\radian}$) at a constant Prandtl number ($\text{Pr}=4.3$) and Rayleigh number ($\text{Ra}=5.7\times10^9$). We found that the arrangement of ratchets on the conducting plate determines the dynamics of inclined convection, i.e., when the large-scale circulation (LSC) flows along the smaller slopes of the ratchets (case A), the change of the heat transport efficiency is smaller than $5\%$ as the tilting angle increases from 0 to $4\pi/9~\si{\radian}$; when the LSC moves towards the steeper slope side of the ratchets (case B), the heat transport efficiency decreases rapidly with the tilting angle larger than blue$\pi/9~\si{\radian}$. By analyzing the flow properties, we give a physical explanation for the observations. As the tilting angle increases, the heat carrier gradually changes from the thermal plumes to the LSC, resulting in different dynamical behavior. In addition, the distribution of the local heat transport also validates the explanation quantitatively. The present work gives insights into controlling inclined convection using asymmetric ratchet structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía