Artículos de revistas sobre el tema "Gait parameter"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Gait parameter".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Law, YC, AFT Mak, WN Wong y M. Zhang. "THE VARIATION OF DYNAMIC FOOT PRESSURE WITH GAIT PARAMETER.(Gait & Motion Analysis)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 115–16. http://dx.doi.org/10.1299/jsmeapbio.2004.1.115.
Texto completoLindsey, Bryndan, Oladipo Eddo, Matthew Prebble, Shane V. Caswell, Ana M. Azevedo y Nelson Cortes. "Single-Parameter Gait Modifications Cause Involuntary Secondary Gait Changes". Medicine & Science in Sports & Exercise 51, Supplement (junio de 2019): 704. http://dx.doi.org/10.1249/01.mss.0000562594.73889.9d.
Texto completoGong, Zewu, Yunwei Zhang, Dongfeng Lu y Tiannan Wu. "Vision-Based Quadruped Pose Estimation and Gait Parameter Extraction Method". Electronics 11, n.º 22 (11 de noviembre de 2022): 3702. http://dx.doi.org/10.3390/electronics11223702.
Texto completoRamakrishnan, Tyagi, Seok Hun Kim y Kyle B. Reed. "Human Gait Analysis Metric for Gait Retraining". Applied Bionics and Biomechanics 2019 (11 de noviembre de 2019): 1–8. http://dx.doi.org/10.1155/2019/1286864.
Texto completoMostafa, Kazi, Innchyn Her y Yi-Hsien Wu. "The Offset Model of a Hexapod Robot and the Effect of the Offset Parameter". International Journal of Manufacturing, Materials, and Mechanical Engineering 2, n.º 3 (julio de 2012): 52–59. http://dx.doi.org/10.4018/ijmmme.2012070104.
Texto completoPepa, Lucia, Federica Verdini y Luca Spalazzi. "Gait parameter and event estimation using smartphones". Gait & Posture 57 (septiembre de 2017): 217–23. http://dx.doi.org/10.1016/j.gaitpost.2017.06.011.
Texto completoRabin, Ely, Peter Shi y William Werner. "Gait parameter control timing with dynamic manual contact or visual cues". Journal of Neurophysiology 115, n.º 6 (1 de junio de 2016): 2880–92. http://dx.doi.org/10.1152/jn.00670.2015.
Texto completoDecavel, Pierre, Thierry Moulin y Yoshimasa Sagawa. "Which gait parameter can be used to evaluate gait improvement in multiple sclerosis?" Annals of Physical and Rehabilitation Medicine 59 (septiembre de 2016): e118. http://dx.doi.org/10.1016/j.rehab.2016.07.267.
Texto completoLee, Daewook, Jiman Soon, Gyuri Choi, Kijoon Kim y Sangwoo Bahn. "Identification of the Visually Prominent Gait Parameters for Forensic Gait Analysis". International Journal of Environmental Research and Public Health 19, n.º 4 (21 de febrero de 2022): 2467. http://dx.doi.org/10.3390/ijerph19042467.
Texto completoBai, Long, Hao Hu, Xiaohong Chen, Yuanxi Sun, Chaoyang Ma y Yuanhong Zhong. "CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition". Sensors 19, n.º 17 (26 de agosto de 2019): 3705. http://dx.doi.org/10.3390/s19173705.
Texto completoXu, Junkai, Fangyuan Cao, Shi Zhan, Ming Ling, Hai Hu y Peter B. Shull. "Mapping-Based Dosage of Gait Modification Selection for Multi-Parameter, Subject-Specific Gait Retraining". IEEE Access 8 (2020): 106354–63. http://dx.doi.org/10.1109/access.2020.2999473.
Texto completoLiu, Long, Huihui Wang, Haorui Li, Jiayi Liu, Sen Qiu, Hongyu Zhao y Xiangyang Guo. "Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model". Sensors 21, n.º 4 (14 de febrero de 2021): 1347. http://dx.doi.org/10.3390/s21041347.
Texto completoLi, Pengcheng, Yasuhiro Akiyama, Xianglong Wan, Kazunori Yamada, Mayu Yokoya y Yoji Yamada. "Gait Phase Estimation Based on User–Walker Interaction Force". Applied Sciences 11, n.º 17 (26 de agosto de 2021): 7888. http://dx.doi.org/10.3390/app11177888.
Texto completoDallali, Houman, Petar Kormushev, Zhibin Li y Darwin Caldwell. "On Global Optimization of Walking Gaits for the Compliant Humanoid Robot, COMAN Using Reinforcement Learning". Cybernetics and Information Technologies 12, n.º 3 (1 de septiembre de 2012): 39–52. http://dx.doi.org/10.2478/cait-2012-0020.
Texto completoIida, Masahiro y Akira Mita. "Gait Parameter Acquisition While Chasing Resident Using Home Robot". Procedia Engineering 188 (2017): 141–47. http://dx.doi.org/10.1016/j.proeng.2017.04.467.
Texto completoSmith, Andrew J. J. y Edward D. Lemaire. "Temporal-spatial gait parameter models of very slow walking". Gait & Posture 61 (marzo de 2018): 125–29. http://dx.doi.org/10.1016/j.gaitpost.2018.01.003.
Texto completoFRANK, T. D. "A SYNERGETIC GAIT TRANSITION MODEL FOR HYSTERETIC GAIT TRANSITIONS FROM WALKING TO RUNNING". Journal of Biological Systems 24, n.º 01 (marzo de 2016): 51–61. http://dx.doi.org/10.1142/s0218339016500030.
Texto completoXing-Hua, Lu, Huang Peng-Fen y Huang Wei-Peng. "Robust control method for bionic gait of machine legs based on time delay feedback". MATEC Web of Conferences 173 (2018): 02009. http://dx.doi.org/10.1051/matecconf/201817302009.
Texto completoFujiwara, Shunrou, Shinpei Sato, Atsushi Sugawara, Yasumasa Nishikawa, Takahiro Koji, Yukihide Nishimura y Kuniaki Ogasawara. "The Coefficient of Variation of Step Time Can Overestimate Gait Abnormality: Test-Retest Reliability of Gait-Related Parameters Obtained with a Tri-Axial Accelerometer in Healthy Subjects". Sensors 20, n.º 3 (21 de enero de 2020): 577. http://dx.doi.org/10.3390/s20030577.
Texto completoLee, Su-Kyoung, Sang-Yeol Lee, Min-Chull Park y Kyung Kim. "The Correlation of Gait Velocity, Cadence and Gait Quality Parameter Using Points of Gait Quality Chart (GQC) Items in Hemiplegic Patients". Journal of Physical Therapy Science 23, n.º 5 (2011): 765–67. http://dx.doi.org/10.1589/jpts.23.765.
Texto completoLIU, JIAN, THURMON LOCKHART y SUKWON KIM. "PREDICTION OF THE SPATIO-TEMPORAL GAIT PARAMETERS USING INERTIAL SENSOR". Journal of Mechanics in Medicine and Biology 18, n.º 07 (noviembre de 2018): 1840002. http://dx.doi.org/10.1142/s021951941840002x.
Texto completoChopra, Swati, Hossein Rouhani, Kevin Moerenhout, Julien Favre, Kamiar Aminian y Xavier Crevoisier. "Outcome of ankle arthrodesis and total ankle replacement for ankle arthrosis in terms of gait variability". Journal of Biomedical Engineering and Informatics 2, n.º 1 (21 de septiembre de 2015): 31. http://dx.doi.org/10.5430/jbei.v2n1p31.
Texto completoHannink, Julius, Thomas Kautz, Cristian F. Pasluosta, Karl-Gunter Gasmann, Jochen Klucken y Bjoern M. Eskofier. "Sensor-Based Gait Parameter Extraction With Deep Convolutional Neural Networks". IEEE Journal of Biomedical and Health Informatics 21, n.º 1 (enero de 2017): 85–93. http://dx.doi.org/10.1109/jbhi.2016.2636456.
Texto completoNAKAE, HIDEYUKI, SHIN MURATA, YOSHIHIRO KAI, MASAYUKI SOMA y YOUSUKE SATOU. "Relationship of gait parameter with physical function in healthy women". Japanese Journal of Health Promotion and Physical Therapy 6, n.º 1 (2016): 9–15. http://dx.doi.org/10.9759/hppt.6.9.
Texto completoOrito, Kensuke, Shogo Kurozumi, Idaku Ishii, Akane Tanaka, Junko Sawada y Hiroshi Matsuda. "A Sensitive Gait Parameter for Quantification of Arthritis in Rats". Journal of Pharmacological Sciences 103, n.º 1 (2007): 113–16. http://dx.doi.org/10.1254/jphs.sc0060156.
Texto completoPearsall, D. J. y P. A. Costigan. "The effect of segment parameter error on gait analysis results". Gait & Posture 9, n.º 3 (julio de 1999): 173–83. http://dx.doi.org/10.1016/s0966-6362(99)00011-9.
Texto completoMustapa, Amirah, Maria Justine, Nadia Mohd Mustafah y Haidzir Manaf. "The Impact of Diabetic Peripheral Neuropathy on Spatiotemporal Gait Parameters in Stroke Survivors: A Case-Control Study". Sains Malaysiana 50, n.º 1 (31 de enero de 2021): 191–99. http://dx.doi.org/10.17576/jsm-2021-5001-19.
Texto completoSantinelli, Felipe Balistieri, Emerson Sebastião, Marina Hiromi Kuroda, Vinicius Christianini Moreno, Julia Pilon, Luiz Henrique Palucci Vieira y Fabio Augusto Barbieri. "Cortical activity and gait parameter characteristics in people with multiple sclerosis during unobstructed gait and obstacle avoidance". Gait & Posture 86 (mayo de 2021): 226–32. http://dx.doi.org/10.1016/j.gaitpost.2021.03.026.
Texto completoYu, Deng, Zhang Yang, Liu Lei, Ni Chaoming y Wu Ming. "Robot-Assisted Gait Training Plan for Patients in Poststroke Recovery Period: A Single Blind Randomized Controlled Trial". BioMed Research International 2021 (29 de agosto de 2021): 1–7. http://dx.doi.org/10.1155/2021/5820304.
Texto completoWang, Xin, Qing M. Wang, Zhaoxiang Meng, Zhenglu Yin, Xun Luo y Duonan Yu. "Gait disorder as a predictor of spatial learning and memory impairment in aged mice". PeerJ 5 (5 de enero de 2017): e2854. http://dx.doi.org/10.7717/peerj.2854.
Texto completoLeung, A. K. L., J. C. Y. Cheng, M. Zhang, Y. Fan y X. Dong. "Contact force ratio: A new parameter to assess foot arch function". Prosthetics and Orthotics International 28, n.º 2 (agosto de 2004): 167–74. http://dx.doi.org/10.1080/03093640408726701.
Texto completoSeo, Young-Jin y Yong-San Yoon. "Design of a robust dynamic gait of the biped using the concept of dynamic stability margin". Robotica 13, n.º 5 (septiembre de 1995): 461–68. http://dx.doi.org/10.1017/s0263574700018294.
Texto completoSouza, Ricardo Krause Martinez de, Samanta Fabrício Blattes da Rocha, Rodrigo Tomazini Martins, Pedro André Kowacs y Ricardo Ramina. "Gait in normal pressure hydrocephalus: characteristics and effects of the CSF tap test". Arquivos de Neuro-Psiquiatria 76, n.º 5 (mayo de 2018): 324–31. http://dx.doi.org/10.1590/0004-282x20180037.
Texto completoDi Russo, Andrea, Dimitar Stanev, Stéphane Armand y Auke Ijspeert. "Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study". PLOS Computational Biology 17, n.º 5 (19 de mayo de 2021): e1008594. http://dx.doi.org/10.1371/journal.pcbi.1008594.
Texto completoDankowicz, Harry, Jesper Adolfsson y Arne B. Nordmark. "Repetitive Gait of Passive Bipedal Mechanisms in a Three-Dimensional Environment". Journal of Biomechanical Engineering 123, n.º 1 (16 de octubre de 2000): 40–46. http://dx.doi.org/10.1115/1.1338121.
Texto completoLee, Joon-Hee. "The effects of mouthguards on gait parameter in professional basketball athletes". Korean Journal of Sports Science 27, n.º 2 (30 de abril de 2018): 1187–94. http://dx.doi.org/10.35159/kjss.2018.04.27.2.1187.
Texto completoYang, Che-Chang, Yeh-Liang Hsu, Kao-Shang Shih y Jun-Ming Lu. "Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System". Sensors 11, n.º 8 (25 de julio de 2011): 7314–26. http://dx.doi.org/10.3390/s110807314.
Texto completoLescano, C. N., S. E. Rodrigo y D. A. Christian. "A possible parameter for gait clinimetric evaluation in Parkinson’s disease patients". Journal of Physics: Conference Series 705 (abril de 2016): 012019. http://dx.doi.org/10.1088/1742-6596/705/1/012019.
Texto completoWAGATSUMA, Toma, Minoru HASHIMOTO y Atsushi TSUKAHARA. "Gait Support by Changing Synchronization Parameter in Real Time Using curara". Proceedings of Mechanical Engineering Congress, Japan 2018 (2018): J1510101. http://dx.doi.org/10.1299/jsmemecj.2018.j1510101.
Texto completoParthasarathy, Aniruddha, Megharjun V.N. y Viswanath Talasila. "Forecasting a gait cycle parameter region to enable optimal FES triggering". IFAC-PapersOnLine 53, n.º 1 (2020): 232–39. http://dx.doi.org/10.1016/j.ifacol.2020.06.040.
Texto completoCouillandre, Annabelle y Yvon Brenière. "How Does the Heel-Off Posture Modify Gait Initiation Parameter Programming?" Journal of Motor Behavior 35, n.º 3 (septiembre de 2003): 221–27. http://dx.doi.org/10.1080/00222890309602136.
Texto completoXie, Lei, Peicheng Yang, Chuyu Wang, Tao Gu, Gaolei Duan, Xinran Lu y Sanglu Lu. "GaitTracker: 3D Skeletal Tracking for Gait Analysis Based on Inertial Measurement Units". ACM Transactions on Sensor Networks 18, n.º 2 (31 de mayo de 2022): 1–27. http://dx.doi.org/10.1145/3502722.
Texto completoGao, Farong, Taixing Tian, Ting Yao y Qizhong Zhang. "Human Gait Recognition Based on Multiple Feature Combination and Parameter Optimization Algorithms". Computational Intelligence and Neuroscience 2021 (27 de febrero de 2021): 1–14. http://dx.doi.org/10.1155/2021/6693206.
Texto completoYang, Kun, Xuewen Rong, Lelai Zhou y Yibin Li. "Modeling and Analysis on Energy Consumption of Hydraulic Quadruped Robot for Optimal Trot Motion Control". Applied Sciences 9, n.º 9 (28 de abril de 2019): 1771. http://dx.doi.org/10.3390/app9091771.
Texto completoDamale, Pranav U., Edwin K. P. Chong, Sean L. Hammond y Ronald B. Tjalkens. "A Low-Cost, Autonomous Gait Detection and Estimation System for Analyzing Gait Impairments in Mice". Journal of Healthcare Engineering 2021 (12 de noviembre de 2021): 1–14. http://dx.doi.org/10.1155/2021/9937904.
Texto completoAftab, Zohaib, Gulraiz Ahmed, Asad Ali y Nazia Gillani. "Estimation of Gait Parameters for Transfemoral Amputees Using Lower Limb Kinematics and Deterministic Algorithms". Applied Bionics and Biomechanics 2022 (19 de octubre de 2022): 1–11. http://dx.doi.org/10.1155/2022/2883026.
Texto completoMisu, Shogo, Tsuyoshi Asai, Shunsuke Murata, Ryo Nakamura, Tsunenori Isa, Yamato Tsuboi, Kensuke Oshima et al. "Association between Abnormal Gait Patterns and an Elevated Degree of Pain after Daily Walking: A Preliminary Study". International Journal of Environmental Research and Public Health 19, n.º 5 (1 de marzo de 2022): 2842. http://dx.doi.org/10.3390/ijerph19052842.
Texto completoSilva, Rui, Ivo Santos Dimas, Justin W. Fernandez, Nuno Alves, Pedro Morouço, Ana Colette Maurício, António Veloso y Sandra Amado. "Sheep Gait Biomechanics and the Assessment of Musculoskeletal Conditions: A Systematic Review". Applied Mechanics and Materials 890 (abril de 2019): 248–59. http://dx.doi.org/10.4028/www.scientific.net/amm.890.248.
Texto completoKim, Jeong-Kyun, Myung-Nam Bae, Kangbok Lee, Jae-Chul Kim y Sang Gi Hong. "Explainable Artificial Intelligence and Wearable Sensor-Based Gait Analysis to Identify Patients with Osteopenia and Sarcopenia in Daily Life". Biosensors 12, n.º 3 (7 de marzo de 2022): 167. http://dx.doi.org/10.3390/bios12030167.
Texto completoHamandi, Sadiq J., Marwa Azzawi y Waleed Abdulwahed. "Gait Analysis after Unilateral Total Hip Replacement Surgery". Al-Nahrain Journal for Engineering Sciences 21, n.º 4 (20 de diciembre de 2018): 458–66. http://dx.doi.org/10.29194/njes.21040458.
Texto completo