Literatura académica sobre el tema "Gα15"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gα15".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gα15"
Davignon, I., M. D. Catalina, D. Smith, J. Montgomery, J. Swantek, J. Croy, M. Siegelman y T. M. Wilkie. "Normal Hematopoiesis and Inflammatory Responses Despite Discrete Signaling Defects in Gα15 Knockout Mice". Molecular and Cellular Biology 20, n.º 3 (1 de febrero de 2000): 797–804. http://dx.doi.org/10.1128/mcb.20.3.797-804.2000.
Texto completoYule, David I., Christopher W. Baker y John A. Williams. "Calcium signaling in rat pancreatic acinar cells: a role for Gαq, Gα11, and Gα14". American Journal of Physiology-Gastrointestinal and Liver Physiology 276, n.º 1 (1 de enero de 1999): G271—G279. http://dx.doi.org/10.1152/ajpgi.1999.276.1.g271.
Texto completovan den Bos, Esther, Benjamin Ambrosy, Markus Horsthemke, Stefan Walbaum, Anne C. Bachg, Nina Wettschureck, Giulio Innamorati, Thomas M. Wilkie y Peter J. Hanley. "Knockout mouse models reveal the contributions of G protein subunits to complement C5a receptor–mediated chemotaxis". Journal of Biological Chemistry 295, n.º 22 (24 de abril de 2020): 7726–42. http://dx.doi.org/10.1074/jbc.ra119.011984.
Texto completoFeild, John A., James J. Foley, Tania T. Testa, Parvathi Nuthulaganti, Catherine Ellis, Henry M. Sarau y Robert S. Ames. "Cloning and characterization of a rabbit ortholog of human Gα16 and mouse Gα15". FEBS Letters 460, n.º 1 (22 de octubre de 1999): 53–56. http://dx.doi.org/10.1016/s0014-5793(99)01317-4.
Texto completoGAUDREAU, Rémi, Christian Le GOUILL, Salim MÉTAOUI, Stéphane LEMIRE, Jana STANKOVÀ y Marek ROLA-PLESZCZYNSKI. "Signalling through the leukotriene B4 receptor involves both αi and α16, but not αq or α11 G-protein subunits". Biochemical Journal 335, n.º 1 (1 de octubre de 1998): 15–18. http://dx.doi.org/10.1042/bj3350015.
Texto completoRafa-Zabłocka, Katarzyna, Agnieszka Zelek-Molik, Beata Tepper, Piotr Chmielarz, Grzegorz Kreiner, Michał Wilczkowski y Irena Nalepa. "Chronic restraint stress induces changes in the cerebral Galpha 12/13 and Rho-GTPase signaling network". Pharmacological Reports 73, n.º 4 (11 de junio de 2021): 1179–87. http://dx.doi.org/10.1007/s43440-021-00294-4.
Texto completoCho, Min Kyung, Won Dong Kim, Sung Hwan Ki, Jong-Ik Hwang, Sangdun Choi, Chang Ho Lee y Sang Geon Kim. "Role of Gα12 and Gα13 as Novel Switches for the Activity of Nrf2, a Key Antioxidative Transcription Factor". Molecular and Cellular Biology 27, n.º 17 (25 de junio de 2007): 6195–208. http://dx.doi.org/10.1128/mcb.02065-06.
Texto completoMcNeil Coffield, V., Whitney S. Helms, Qi Jiang y Lishan Su. "Gα13 Mediates a Signal That Is Essential for Proliferation and Survival of Thymocyte Progenitors". Journal of Experimental Medicine 200, n.º 10 (8 de noviembre de 2004): 1315–24. http://dx.doi.org/10.1084/jem.20040944.
Texto completoTutunea-Fatan, Elena, Jasper C. Lee, Bradley M. Denker y Lakshman Gunaratnam. "Heterotrimeric Gα12/13 proteins in kidney injury and disease". American Journal of Physiology-Renal Physiology 318, n.º 3 (1 de marzo de 2020): F660—F672. http://dx.doi.org/10.1152/ajprenal.00453.2019.
Texto completoLuo, W., L. R. Latchney y D. J. Culp. "G protein coupling to M1 and M3muscarinic receptors in sublingual glands". American Journal of Physiology-Cell Physiology 280, n.º 4 (1 de abril de 2001): C884—C896. http://dx.doi.org/10.1152/ajpcell.2001.280.4.c884.
Texto completoTesis sobre el tema "Gα15"
Chauvet, Sylvain. "Les protéines Gα12 et Gα13 dans la mucoviscidose : Rôle dans la dégradation de la protéine CFTR mutée F508del et dans le contrôle des jonctions intercellulaires". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00684255.
Texto completoZanini, Sara. "FUNCTIONAL ANALYSIS OF Gα15 EXPRESSION IN PANCREATIC CANCER". Doctoral thesis, 2014. http://hdl.handle.net/11562/711365.
Texto completoPancreatic cancer (PaCa) is the fourth leading cause of cancer death in the USA with overall 5-year survival rate of only 3-5% that leads to an estimated 227000 deaths per year worldwide. To date no effective therapies are available. Surgery is the only potentially curative treatment; however because the majority of lesions are lately diagnosed it results in a palliative treatment in the majority of cases. Therefore, the identification of new factors involved in the tumorigenesis process could help to enlighten the molecular biology of pancreatic cancer and to identify new marker and/or pharmacological target. G15 is a heterotrimeric G protein with its α subunit belonging to the Gαq/11 family. In adult tissues it is selectively expressed in immature cell lineages that feature higher cell renewal potential. It promiscuously couples a wide variety of G protein-coupled receptors (GPCRs) to phospholipase C and shows an exceptional resistance to β-arrestin desensitization. Based on the peculiar characteristics of Gα15, we hypothesized that it might promote tumour growth if expressed out of its natural cell context. Our attention has been drawn toward PaCa since previous results revealed significant expression of Gα15 in human tumour PaCa biopsies xenografted in mice. Here we show that Gα15 is not expressed in normal pancreas. A screening of several PaCa cell lines by TaqMan PCR analysis demonstrated ectopic expression of Gα15 mRNA in a significant subset of cases, as confirmed also by immunoblot. Moreover, Gα15 supports stimulation of PKD1 since its depletion in PaCa cell lines reduced the tonic activation of PKD1. In addition, its depletion dramatically inhibited resistance to the lack of nutrients and anchorage-independent growth. Based on the fact that embryonic endoderm gives rise to the whole digestive tube, Gα15 ectopic expression was investigated also in small intestinal neuroendocrine neoplasia (SI-NENs). The results emerged for PaCa were confirmed also in SI-NENs: only a subset of patient tumour samples and SI-NENs cell lines expressed Gα15 that is absent in normal mucosa and normal enterochromaffin cells. Moreover, a higher Gα15 expression could be predictive of a worse survival. Taken together, our findings suggest that Gα15 supports neoplastic transformation in pancreas and possibly in other organs of the digestive tract and therefore could offer novel potential target for the therapy of PaCa.
Fahimi-Vahid, Mercedeh [Verfasser]. "Untersuchungen zur Beteiligung von Gα12 [G-alpha-12], Gα13-Proteinen [G-alpha-13-Proteinen] an der Aktivierung der Phospholipase D in Kardiomyozyten der neonatalen Ratten / vorgelegt von Mercedeh Fahimi-Vahid". 2004. http://d-nb.info/970526733/34.
Texto completoLiu, Yi-Ching y 柳依青. "Expression of Gα12 in oral squamous cell carcinoma". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/52690522087536223361.
Texto completoJiang, Shin-Hua y 江欣樺. "The Studies of the Gα11 Pseudogene in Leukemia Cell Line K562 Differentiation". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/15035953741852029744.
Texto completo大葉大學
分子生物科技學系碩士班
101
Heterotrimeric guanine nucleotide-binding proteins (G-protein) have been demonstrated to play integral role in the transduction of extracellular signals from cell membrane receptor (G-protein-coupled receptors, GPCR) to intracellular effectors proteins. G proteins regulate critical processes such as cell growth, differentiation and development. Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells, that has acquired a Philadelphia (Ph) chromosome encoding the BCR–ABL oncogenic fusion protein, which has lost its differentiation activity. Therefore, in recent years, some scholars proposed differentiation therapy, by treating appropriate inducers to induced advanced or aggressive malignant cells maturation and differentiation into mature cells. K562 is the first human immortalized myelogenous leukaemia cell line and belonging undifferentiated pluripotent hematopoietic progenitor cells. K562 cell can be differentiated into erythrocytic or megakaryocytic lineages upon different inducers treatments and was used as a model cell line to study the relationship between the blood cell differentiation and signal transduction. In this report, three different inducers, huangqi (Astragalus membranaceus) and chemicals Hemin and HMBA were used to induce K562 cell differentiation. Two erythroid markers, β-globin or γ-globin, and two megakaryocyte markers CD41 and CD61 are used to monitor the differentiation process. In former report, the Gα11 pseudogene was induced by the huangqi administration. In this study, in promoter activity assay the pseudogene promoter activity increased by two fold when the presence of 1.5 mg / ml of huangqi extract. However, under the influence of the three-inducing agent, the Gα11 pseudogene were up-regulated in the HMBA-induced K562 cell, but we failed to detect significant changing of cell differentiation markers. It may be the consequence of fetal bovine serum used in cell culture which led to change cell characters and low transfection efficiency of the genes. Currently, re-transfection with higher amount of expression plasmid in K562 cells, and select stable clones are on going. I expect the performance of the proper Gα proteins function will change cell fate. In conclusion, understand the G protein function in cell differentiation, can provide the information need for future differentiation therapy of leukemia.
Schütz, Vera [Verfasser]. "Charakterisierung des L-Typ Ca2+-Stroms im linken Ventrikel des Herzens von Gα11-defizienten [G-alpha-11-defizienten] Mäusen / vorgelegt von Vera Schütz". 2011. http://d-nb.info/1011708388/34.
Texto completoCapítulos de libros sobre el tema "Gα15"
Meigs, Thomas E., Alex Lyakhovich, Hoon Shim, Ching-Kang Chen, Denis J. Dupré, Terence E. Hébert, Joe B. Blumer et al. "Gα12". En Encyclopedia of Signaling Molecules, 847. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100598.
Texto completoGutkind, J. Silvio, Omar A. Coso y Ningzhi Xu. "Gα12- and Gα13-Subunits of Heterotrimeric G-Proteins A Novel Family of Oncogenes". En G Proteins, Receptors, and Disease, 101–17. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-4612-1802-9_6.
Texto completo"Gα12 and Gα13". En Encyclopedia of Signaling Molecules, 2316. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_105117.
Texto completoTanabe, Shihori, Barry Kreutz, Nobuchika Suzuki y Tohru Kozasa. "Regulation of RGS-RhoGEFs by Gα12 and Gα13 Proteins". En Methods in Enzymology, 285–94. Elsevier, 2004. http://dx.doi.org/10.1016/s0076-6879(04)90018-3.
Texto completoMak, Tak W., Josef Penninger, John Roder, Janet Rossant y Mary Saunders. "Gα13". En The Gene Knockout FactsBook, 366–67. Elsevier, 1998. http://dx.doi.org/10.1016/b978-012466044-1/50203-9.
Texto completoDermott, Jonathan M. y N. Dhanasekaran. "Determining Cellular Role of Gα12". En G Protein Pathways, Part B: G Proteins and their Regulators, 298–309. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)44722-2.
Texto completoHart, Matthew J., William Roscoe y Gideon Bollag. "Activation of Rho GEF activity by Gα13". En Methods in Enzymology, 61–71. Elsevier, 2000. http://dx.doi.org/10.1016/s0076-6879(00)25431-1.
Texto completoMao, Junhao y Dianqing Wu. "Functional Interaction of Gα13 with p115RhoGEF Determined with Transcriptional Reporter System". En Methods in Enzymology, 404–10. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)45033-1.
Texto completoActas de conferencias sobre el tema "Gα15"
Scarlett, Kisha, Elshaddai White, Christopher Coke, Jada Carter, LaToya Bryant y Cimona V. Hinton. "Abstract 2512: Agonist-induced heterodimerization between CXCR4 and CB2 inhibits Gα13/RhoA-mediated cell migration". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2512.
Texto completoHa, Ji Hee, Danny Dhanasekaran, Jeremy Ward, Yoon Mi Yang, Sang Geon Kim y Lakshmi Varadarajalu. "Abstract 3020: The gep protooncogene Gα12 mediates LPA-stimulated activation of CREB in ovarian cancer cells." En Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3020.
Texto completoGoodwin, AT, B. Hinz y G. Jenkins. "S77 The G proteins Gαq/11 and Gα12/13 drive unique myofibroblast functions to promote pulmonary fibrosis". En British Thoracic Society Winter Meeting, Wednesday 17 to Friday 19 February 2021, Programme and Abstracts. BMJ Publishing Group Ltd and British Thoracic Society, 2021. http://dx.doi.org/10.1136/thorax-2020-btsabstracts.82.
Texto completoChaim, Olga M., Jinhui Ma, Jacqueline Lara, Frank Furnari, Shigeki Myamoto y Joan H. Brown. "Abstract A19: Regulation of glioblastoma tumor growth and stem cell properties through Gα12 and tissue factor, upstream and downstream players in YAP signaling". En Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a19.
Texto completo