Literatura académica sobre el tema "Fuzzy controller algorithm"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Fuzzy controller algorithm".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Fuzzy controller algorithm"
Zhang, Cui Ping, Li Ping Sun y Zhi Ying Yue. "Gasoline Engine Idle Speed Control Based on PID Fuzzy Algorithm". Advanced Materials Research 338 (septiembre de 2011): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.338.65.
Texto completoCastillo, Oscar, Fevrier Valdez, José Soria, Leticia Amador-Angulo, Patricia Ochoa y Cinthia Peraza. "Comparative Study in Fuzzy Controller Optimization Using Bee Colony, Differential Evolution, and Harmony Search Algorithms". Algorithms 12, n.º 1 (27 de diciembre de 2018): 9. http://dx.doi.org/10.3390/a12010009.
Texto completoGiurgi, Gavril-Ionel, Lorant Andras Szolga y Danut-Vasile Giurgi. "Benefits of Fuzzy Logic on MPPT and PI Controllers in the Chain of Photovoltaic Control Systems". Applied Sciences 12, n.º 5 (23 de febrero de 2022): 2318. http://dx.doi.org/10.3390/app12052318.
Texto completoMohammed, Reham H., Ahmed M. Ismaiel, Basem E. Elnaghi y Mohamed E. Dessouki. "African vulture optimizer algorithm based vector control induction motor drive system". International Journal of Electrical and Computer Engineering (IJECE) 13, n.º 3 (1 de junio de 2023): 2396. http://dx.doi.org/10.11591/ijece.v13i3.pp2396-2408.
Texto completoKim, Min-Soeng, Sun-Gi Hong y Ju-Jang Lee. "Self-Learning Fuzzy Logic Controller using Q-Learning". Journal of Advanced Computational Intelligence and Intelligent Informatics 4, n.º 5 (20 de septiembre de 2000): 349–54. http://dx.doi.org/10.20965/jaciii.2000.p0349.
Texto completoPletl, Szilveszter y Bela Lantos. "Advanced Robot Control Algorithms Based on Fuzzy, Neural and Genetic Methods". Journal of Advanced Computational Intelligence and Intelligent Informatics 5, n.º 2 (20 de marzo de 2001): 81–89. http://dx.doi.org/10.20965/jaciii.2001.p0081.
Texto completoGuo, Li-Xin y Dinh-Nam Dao. "A new control method based on fuzzy controller, time delay estimation, deep learning, and non-dominated sorting genetic algorithm-III for powertrain mount system". Journal of Vibration and Control 26, n.º 13-14 (30 de diciembre de 2019): 1187–98. http://dx.doi.org/10.1177/1077546319890188.
Texto completoHadi, Alireza, Hossein Akbari, Khalil Alipour y Bahram Tarvirdizadeh. "Precise position control of shape memory alloy–actuated continuum modules through fuzzy algorithm". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, n.º 2 (8 de noviembre de 2017): 121–36. http://dx.doi.org/10.1177/0959651817740001.
Texto completoEsmaeili, Mehran, Hossein Shayeghi, Hamid Mohammad Nejad y Abdollah Younesi. "Reinforcement learning based PID controller design for LFC in a microgrid". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, n.º 4 (3 de julio de 2017): 1287–97. http://dx.doi.org/10.1108/compel-09-2016-0408.
Texto completoSitum, Z., D. Pavkovic y B. Novakovic. "Servo Pneumatic Position Control Using Fuzzy PID Gain Scheduling". Journal of Dynamic Systems, Measurement, and Control 126, n.º 2 (1 de junio de 2004): 376–87. http://dx.doi.org/10.1115/1.1767857.
Texto completoTesis sobre el tema "Fuzzy controller algorithm"
Vick, Andrew W. "Genetic Fuzzy Controller for a Gas Turbine Fuel System". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1291053513.
Texto completoLiu, Jingrong. "Design and Analysis of Intelligent Fuzzy Tension Controllers for Rolling Mills". Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/848.
Texto completo麥禮安 y Lai-on Mak. "Fuzzy logic statcom controller design with genetic algorithm application for stability enhancement of interconnected power systems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42128699.
Texto completoMak, Lai-on. "Fuzzy logic statcom controller design with genetic algorithm application for stability enhancement of interconnected power systems". Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42128699.
Texto completoLima, Robson Pacífico Guimarães. "Uma aplicação baseada em sistemas imunológicos artificiais para detecção de falhas em uma plataforma de abastecimento". Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/5293.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, an Artificial-Immune-System based anomaly detection system applied to Water Supply System is presented. At normal working, the pressure level into the system is controlled by a Fuzzy Control System. As the Water Supply System is composed of pressure sensors, valves, pumps, and other devices, faults in these devices causing abnormal disturbances can occur. An algorithm of Artificial-Immune-System, namely, the Negative Selection Algorithm, is the base of the proposed anomaly detection system. The Negative Selection Algorithm verifies abnormal system conditions based on the normal system conditions. Experimental results show that the proposed system is effective in order to detect anomaly.
Neste trabalho é apresentado um método de detecção automática de falhas, baseado em Sistemas Imunológicos Artificias, aplicado em um sistema de abastecimento de água. Este processo utiliza um Sistema de Controle Fuzzy para manter o nível de pressão estabilizado em seu princípio de operação normal do sistema. Esta plataforma de abastecimento de água é composta por sensores de pressão, válvulas, bombas e outros dispositivos. Falhas nos componentes que compõem a plataforma poderão ocorrer causando perturbações em seu funcionamento. Um algoritmo, extraído dos Sistemas Imunológicos Artificiais, denominado de Algoritmo de Seleção Negativa, é a base de detecção de falhas proposto neste trabalho. Este algoritmo verifica condições de operação anormais baseado nas condições de funcionamento normal do sistema. Resultados das simulações e experimentos acerca da utilização deste algoritmo foram obtidos comprovando a eficiência dessa técnica.
Hitchings, Mark R. y n/a. "Distance and Tracking Control for Autonomous Vehicles". Griffith University. School of Microelectronic Engineering, 1999. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050902.084155.
Texto completoHitchings, Mark. "Distance and Tracking Control for Autonomous Vehicles". Thesis, Griffith University, 1999. http://hdl.handle.net/10072/366396.
Texto completoThesis (Masters)
Master of Philosophy (MPhil)
School of Microelectronic Engineering
Science, Environment, Engineering and Technology
Full Text
LIMA, Fernanda Maria Maciel de. "PROPOSTA DE CONTROLE NEBULOSO BASEADO EM CRITÉRIO DE ESTABILIDADE ROBUSTA NO DOMÍNIO DO TEMPO CONTÍNUO VIA ALGORITMO GENÉTICO MULTIOBJETIVO". Universidade Federal do Maranhão, 2015. http://tedebc.ufma.br:8080/jspui/handle/tede/1861.
Texto completoMade available in DSpace on 2017-08-24T11:30:17Z (GMT). No. of bitstreams: 1 Fernanda Lima.pdf: 9275191 bytes, checksum: 7f56bba066e97503f4da03ab7ab861c9 (MD5) Previous issue date: 2015-08-31
A fuzzy project Takagi-Sugeno (TS) with robust stability based on the specifications of the gain and phase margins via multi-objective genetic algorithm in continuos time domain is proposed in this master thesis. A Fuzzy C-means (FCM) clustering algorithm is used to estimate the antecedent parameters and rules number of a fuzzy TS model by means of the input and output experimental data of the plant to be controlled, while minimum squares algorithm estimate the consequent parameters. A multi-objective genetic strategy is defined to adjust the parameters of a fuzzy PID controller, so that, the gain and phase margins of the fuzzy control system are close to the specified values. Two theorems are proposed to analyse the necessary and sufficient conditions for the fuzzy PID controller design to ensure the robust stability in the close-loop control. The fuzzy PID controller was simulated in the Simulink environment and compared with lead and delay compensator. Experimental results obtained in a control platform in real time to validation the methodology proposed are presented and compared with fuzzy PID controller obtained by the Ziegler Nichols method. The results demonstrate the effectiveness and practical feasibility of the proposed methodology.
Um projeto de controle nebuloso Takagi-Sugeno(TS) com estabilidade robusta baseado nas especificações das margens de ganho e fase via algoritmo genético multiobjetivo no domínio do tempo contínuo é proposto nesta dissertação. Um algoritmo de agrupamento Fuzzy C-Means (FCM) é usado para estimar os parâmetros do antecedente e o número da regras de um modelo nebuloso TS, por meio dos dados experimentais de entrada e de saída da planta a ser controlada, enquanto que o algoritmo de mínimos quadrados estima os parâmetros do consequente. Uma estratégia genética multiobjetiva é definida para ajustar os parâmetros de um controlador PID nebuloso, de modo que, as margens de ganho e fase do sistema de controle nebuloso estejam próximos dos valores especificados. São propostos dois teoremas que analisam as condições necessárias e suficientes para o projeto do controlador PID nebuloso de modo a garantir a estabilidade robusta na malha de controle. O controlador PID nebuloso foi simulado no ambiente Simulink e comparado com compensadores de avanço e de atraso e os resultados analisados. Resultados experimentais obtidos em uma plataforma de controle, em tempo real, para validação da metodologia proposta são apresentados e comparado com controlador PID nebuloso obtido pelo método de Ziegler Nichols. Os resultados obtidos demonstram a eficácia e viabilidade prática da metodologia proposta.
Carlos, Luiz Amorim. "Algoritmos gen?ticos: uso de l?gica nebulosa e an?lise de converg?ncia por cadeia de Markov". Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15236.
Texto completoIn this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables
Neste trabalho, a cadeia de Markov ser? a ferramenta usada na modelagem e na an?lise de converg?ncia do algoritmo gen?tico, tanto para sua vers?o padr?o quanto para as demais vers?es que o algoritmo gen?tico permite. Al?m disso, pretende-se comparar o desempenho da vers?o padr?o com a vers?o nebulosa, por acreditar que esta vers?o d? ao algoritmo gen?tico uma grande capacidade para encontrar um ?timo global, pr?prio dos algoritmos de otimiza??o global. A escolha deste algoritmo deve-se tamb?m ao fato do mesmo ter se tornado, nos ?ltimos anos, uma das ferramentas mais usadas para achar uma solu??o do problema de otimiza??o. Esta escolha deve-se ? sua comprovada efic?cia na busca de uma solu??o de boa qualidade para o problema, considerando que o conhecimento de uma solu??o de boa qualidade torna-se aceit?vel tendo em vista que pode n?o existir um outro algorimo capaz de obter a solu??o ?tima, para muitos desses problemas. Entretanto, esse algoritmo pode ser definido, levando em conta que o mesmo ? dependente n?o apenas da forma como o problema ? representado, mas tamb?m como s?o definidos alguns dos operadores, desde sua vers?o padr?o, quando os par?metros s?o mantidos fixos, at? suas vers?es com par?metros vari?veis. Por isso, para se alcan?ar um bom desempenho com o aludido algoritmo ? necess?rio que o mesmo tenha um adequado crit?rio na escolha de seus par?metros, principalmente da taxa de muta??o e da taxa de cruzamento ou, at? mesmo, do tamanho da popula??o. ? importante lembrar que as implementa??es em que par?metros s?o mantidos fixos durante toda a execu??o, a modelagem do algoritmo por cadeia de Markov resulta numa cadeia homog?nea, e quando permite a varia??o de par?metros ao longo da execu??o, a cadeia de Markov que o modela passa a ser do tipo n?o-homog?nea. Portanto, na tentativa de melhorar o desempenho do algoritmo, alguns trabalhos t?m procurado realizar o ajuste dos par?metros atrav?s de estrat?gias que captem caracter?sticas intr?nsecas ao problema. Essas caracter?sticas s?o extra?das do estado presente de execu??o, com o fim de identificar e preservar algum padr?o relacionado a uma solu??o de boa qualidade e, ao mesmo tempo, descartando aquele padr?o de baixa qualidade. As estrat?gias de extra??o das caracter?sticas tanto podem usar t?cnicas precisas quanto t?cnicas nebulosas, sendo neste ?ltimo caso feita atrav?s de um controlador nebuloso. Com o fim de avaliar empiriccamente o desempenho de um algoritmo n?o-homog?neo, apresenta-se testes onde se compara o algoritmo gen?tico padr?o com o algoritmo gen?tico nebuloso, sendo a taxa de muta??o ajustada por um controlador nebuloso. Para isso, escolhe-se problemas de otimiza??o cujo n?mero de solu??es varia exponencialmente com o n?mero de vari?veis
Pires, Danúbia Soares. "PROPOSTA DE CONTROLE NEBULOSO BASEADO EM CRITÉRIO DE ESTABILIDADE ROBUSTA NO DOMÍNIO DO TEMPO DISCRETO VIA ALGORITMO GENÉTICO MULTIOBJETIVO". Universidade Federal do Maranhão, 2013. http://tedebc.ufma.br:8080/jspui/handle/tede/505.
Texto completoIn this master thesis, a robust fuzzy digital PID control methodology based on gain and phase margins specifications, is proposed. A mathematical formulation, based on gain and phase margins specifications, the Takagi-Sugeno fuzzy model of the plant to be controlled, the structure of the digital PID controller and the time delay uncertain system, was developed. From input and output data of the plant, the fuzzy clustering Fuzzy C-Means (FCM) algorithm estimates the antecedent parameters (operation areas ) and the rules number of Takagi-Sugeno fuzzy model. The least squares algorithm provides the consequent parameters linear submodels. A multiobjective genetic strategy is defined to tune the fuzzy digital PID controller parameters, so the gain and phase margins specified to the fuzzy control system are get. An analysis of necessary and sufficient conditions for fuzzy digital PID controller design with robust stability, with the proposal of the two theorems are presented. The digital fuzzy PID controller was implemented on a platform designed for monitoring and control in real time, based on CompactRIO and LabVIEW 9073, National Instruments, of the Laboratory of Computational Intelligence Applied to Technology (ICAT/DEE/IFMA), applying the temperature control of a thermal plant. Experimental results show the efficiency of the proposed methodology, through tracking of the reference and the gain and phase margins keeping closed of the specified ones.
Nesta dissertação é proposta uma metodologia para projeto de controle PID digital nebuloso robusto baseado nas especificações das margens de ganho e fase. É desenvolvida uma formulação matemática, baseada nas especificações das margens de ganho e fase, no modelo nebuloso Takagi-Sugeno da planta a ser controlada, na estrutura do controlador PID digital e o atraso de tempo do sistema incerto. A partir dos dados de entrada e saída da planta, o algoritmo de agrupamento nebuloso Fuzzy C-Means (FCM), estima os parâmetros do antecedente (regiões de operação) e o número de regras do modelo nebuloso Takagi-Sugeno. O algoritmo de mínimos quadrados fornece os parâmetros dos submodelos lineares do consequente. Uma estratégia genética multiobjetiva é utilizada para encontrar os parâmetros do controlador PID digital nebuloso, de modo que as margens de ganho e fase especificadas para o sistema de controle nebuloso sejam alcançadas. Uma análise das condições necessárias e suficientes para o projeto do controlador PID digital nebuloso com estabilidade robusta, a partir da proposta de dois teoremas, é apresentada. O controlador PID digital nebuloso projetado foi implementado numa plataforma para supervisão e controle em tempo real, baseada no CompactRIO 9073 e no software LabVIEW, da National Instruments, do Laboratório de Inteligência Computacional Aplicada à Tecnologia (ICAT/DEE/IFMA), com aplicação ao controle de temperatura de uma planta térmica. Resultados experimentais mostram a eficiência da metodologia proposta, uma vez que a trajetória de referência é seguida e as margens de ganho e fase permanecem próximas às especificadas.
Libros sobre el tema "Fuzzy controller algorithm"
Astudillo, Leslie, Patricia Melin y Oscar Castillo. Chemical Optimization Algorithm for Fuzzy Controller Design. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8.
Texto completoMcClintock, Shaunna. Soft computing: A fuzzy logic controlled genetic algorithm environment. [S.l: The Author], 1999.
Buscar texto completoAmador, Leticia y Oscar Castillo. Optimization of Type-2 Fuzzy Controllers Using the Bee Colony Algorithm. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54295-9.
Texto completoRommelfanger, Heinrich. PC software FULPAL 2.0: An interactive algorithm for solving multicriteria fuzzy linear programs controlled by aspiration levels. Frankfurt/Main: Johann Wolfgang Goethe-Universität Frankfurt, Fachbereich Wirtschaftswissenschaften, 1995.
Buscar texto completoCastillo, Oscar, Patricia Melin y Leslie Astudillo. Chemical Optimization Algorithm for Fuzzy Controller Design. Springer London, Limited, 2014.
Buscar texto completoCastillo, Oscar, Patricia Melin y Leslie Astudillo. Chemical Optimization Algorithm for Fuzzy Controller Design. Springer, 2014.
Buscar texto completoPrecup, Radu-Emil y Radu-Codrut David. Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems. Elsevier Science & Technology Books, 2019.
Buscar texto completoNature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems. Elsevier Science & Technology, 2019.
Buscar texto completoNature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-00098-5.
Texto completoAmador, Leticia y Oscar Castillo. Optimization of Type-2 Fuzzy Controllers Using the Bee Colony Algorithm. Springer International Publishing AG, 2017.
Buscar texto completoCapítulos de libros sobre el tema "Fuzzy controller algorithm"
Grantner, J. L. "Parallel Algorithm for Fuzzy Logic Controller". En Fuzzy Logic, 177–95. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-88955-3_6.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "The Proposed Chemical Reaction Algorithm". En Chemical Optimization Algorithm for Fuzzy Controller Design, 13–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_4.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Introduction". En Chemical Optimization Algorithm for Fuzzy Controller Design, 1–3. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_1.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Theory and Background". En Chemical Optimization Algorithm for Fuzzy Controller Design, 5–9. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_2.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Chemical Definitions". En Chemical Optimization Algorithm for Fuzzy Controller Design, 11–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_3.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Application Problems". En Chemical Optimization Algorithm for Fuzzy Controller Design, 19–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_5.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Simulation Results". En Chemical Optimization Algorithm for Fuzzy Controller Design, 27–56. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_6.
Texto completoAstudillo, Leslie, Patricia Melin y Oscar Castillo. "Conclusions". En Chemical Optimization Algorithm for Fuzzy Controller Design, 57–58. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05245-8_7.
Texto completoYun, YoungSu y Mitsuo Gen. "Adaptive Hybrid Genetic Algorithm with Fuzzy Logic Controller". En Fuzzy Sets Based Heuristics for Optimization, 251–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36461-0_16.
Texto completoXie, Hongmei, Yuxiao Yan y Tianzi Zeng. "Simulations of Fuzzy PID Temperature Control System for Plant Factory". En Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 1089–99. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_109.
Texto completoActas de conferencias sobre el tema "Fuzzy controller algorithm"
Parimi, V. Ram Mohan y Devendra P. Garg. "Genetic Q-Fuzzy Based Intelligent Control for Mobile Robot Navigation". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60502.
Texto completoLieh, Junghsen y Wei Jie Li. "Fuzzy Logic Control of Material Forming Process". En ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0409.
Texto completoShill, Pintu Chandra, Kishore Kumar Pal, Md Faijul Amin y Kazuyuki Murase. "Genetic algorithm based fully automated and adaptive fuzzy logic controller". En 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007560.
Texto completoShirzi, Moteaal Asadi y M. R. Hairi-Yazdi. "Active tracking using Intelligent Fuzzy Controller and kernel-based algorithm". En 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007585.
Texto completoAnsari, Afshin, Rasoul Rajaei y Nasim Nourafza. "Fuzzy controller improvement through imperialist colonial algorithm". En 2011 23rd Chinese Control and Decision Conference (CCDC). IEEE, 2011. http://dx.doi.org/10.1109/ccdc.2011.5968997.
Texto completoChae, Myungjin, Kyubyung Kang, Dan D. Koo, Sukjoon Oh y Jae Youl Chun. "Fuzzy Controller Algorithm for Automated HVAC Control". En 37th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2020. http://dx.doi.org/10.22260/isarc2020/0078.
Texto completoYoung Im Cho. "An improved fuzzy inference algorithm by weighted in fuzzy controller". En 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406952.
Texto completoShill, Pintu Chandra, Md Amjad Hossain, Md Faijul Amin y Kazuyuki Murase. "An adaptive fuzzy logic controller based on real coded quantum-inspired evolutionary algorithm". En 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007374.
Texto completoRahimi, Mohammad A., Rasoul Salehi y Aria Alasty. "Designing Gear-Shift Pattern for an Electric Vehicle to Optimize Energy Consumption". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40457.
Texto completoYang, Shichun, Ming Li, Bin Xu, Bin Guo y Chuangao Zhu. "Optimization of Fuzzy Controller Based on Genetic Algorithm". En 2010 International Conference on Intelligent System Design and Engineering Application (ISDEA). IEEE, 2010. http://dx.doi.org/10.1109/isdea.2010.159.
Texto completoInformes sobre el tema "Fuzzy controller algorithm"
Li, Yan, Yuhao Luo y Xin Lu. PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm. SAE International, marzo de 2022. http://dx.doi.org/10.4271/2022-01-0739.
Texto completo