Artículos de revistas sobre el tema "Fuel systems"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Fuel systems.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fuel systems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Staiger, Robert y Adrian Tantau. "Fuel Cell Heating System a Meaningful Alternative to Today’s Heating Systems". Journal of Clean Energy Technologies 5, n.º 1 (2017): 35–41. http://dx.doi.org/10.18178/jocet.2017.5.1.340.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ford, Terry. "Airframe fuel systems". Aircraft Engineering and Aerospace Technology 67, n.º 2 (febrero de 1995): 2–4. http://dx.doi.org/10.1108/eb037547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lovering, D. G. "Fuel Cell Systems". Journal of Power Sources 52, n.º 1 (noviembre de 1994): 155–56. http://dx.doi.org/10.1016/0378-7753(94)87024-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

E, Abonyi Sylvester, Isidore Uju Uche y Okafor Anthony A. "Performance of Fuel Electronic Injection Engine Systems". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 de diciembre de 2017): 1165–75. http://dx.doi.org/10.31142/ijtsrd8211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MILEWSKI, Jaroslaw y Krzysztof BADYDA. "E108 TRI-GENERATION SYSTEMS BASED ON HIGHTEMPERATURE FUEL CELLS(Distributed Energy System-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–275_—_1–279_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-275_.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ahmed, Shabbir, Romesh Kumar y Michael Krumpelt. "Fuel processing for fuel cell power systems". Fuel Cells Bulletin 2, n.º 12 (septiembre de 1999): 4–7. http://dx.doi.org/10.1016/s1464-2859(00)80122-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Willms, R. Scott y Satoshi Konishi. "Fuel cleanup systems for fusion fuel processing". Fusion Engineering and Design 18 (diciembre de 1991): 53–60. http://dx.doi.org/10.1016/0920-3796(91)90107-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rokni, M. "Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels". Energy 137 (octubre de 2017): 1013–25. http://dx.doi.org/10.1016/j.energy.2017.03.082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Baranova, M., I. Grishina, B. Damdinov y R. Gomboev. "Dispersed-colloidal fuel systems". IOP Conference Series: Materials Science and Engineering 704 (13 de diciembre de 2019): 012015. http://dx.doi.org/10.1088/1757-899x/704/1/012015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mitlitsky, Fred, Blake Myers y Andrew H. Weisberg. "Regenerative Fuel Cell Systems". Energy & Fuels 12, n.º 1 (enero de 1998): 56–71. http://dx.doi.org/10.1021/ef970151w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Taylor, Josh A., Sairaj V. Dhople y Duncan S. Callaway. "Power systems without fuel". Renewable and Sustainable Energy Reviews 57 (mayo de 2016): 1322–36. http://dx.doi.org/10.1016/j.rser.2015.12.083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Docter, A. y A. Lamm. "Gasoline fuel cell systems". Journal of Power Sources 84, n.º 2 (diciembre de 1999): 194–200. http://dx.doi.org/10.1016/s0378-7753(99)00317-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Moseley, P. T. "Fuel Cell Systems Explained". Journal of Power Sources 93, n.º 1-2 (febrero de 2001): 285. http://dx.doi.org/10.1016/s0378-7753(00)00571-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ishizawa, Maki, Katsuhisa Kimata, Yutaka Kuwata, Masaaki Takeuchi y Tsutomu Ogata. "Portable fuel cell systems". Electronics and Communications in Japan (Part I: Communications) 82, n.º 7 (julio de 1999): 35–43. http://dx.doi.org/10.1002/(sici)1520-6424(199907)82:7<35::aid-ecja4>3.0.co;2-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Glarborg, P. "Fuel nitrogen conversion in solid fuel fired systems". Progress in Energy and Combustion Science 29, n.º 2 (2003): 89–113. http://dx.doi.org/10.1016/s0360-1285(02)00031-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Petti, D., D. Crawford y N. Chauvin. "Fuels for Advanced Nuclear Energy Systems". MRS Bulletin 34, n.º 1 (enero de 2009): 40–45. http://dx.doi.org/10.1557/mrs2009.11.

Texto completo
Resumen
AbstractFuels for advanced nuclear reactors differ from conventional light water reactor fuels and also vary widely because of the specific architectures and intended missions of the reactor systems proposed to deploy them. Functional requirements of all fuel designs for advanced nuclear energy systems include (1) retention of fission products and fuel nuclides, (2) dimensional stability, and (3) maintenance of a geometry that can be cooled. In all cases, anticipated fuel performance is the limiting factor in reactor system design, and cumulative effects of increased utilization and increased exposure to inservice environments degrade fuel performance. In this article, the current status of each fuel system is reviewed, and technical challenges confronting the implementation of each fuel in the context of the entire advanced reactor fuel cycle (fabrication, reactor performance, recycle) are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Lavrichshev, O. A. y A. B. Ustimenko. "PLASMA-FUEL SYSTEMS AND PRINCIPLES OF THEIR FUNCTIONING". ГОРЕНИЕ И ПЛАЗМОХИМИЯ 20, n.º 1 (21 de febrero de 2022): 51–62. http://dx.doi.org/10.18321/cpc481.

Texto completo
Resumen
This article presents the main types of plasma-fuel systems and the principles of their operation, which provide environmental and economic benefits compared to traditional fuel-use technologies. In plasma-fuel systems, coal of any quality is upgraded before it is burned. In general, a plasma-fuel system is a fuel device (a device into which fuel is supplied) with a plasma source. In plasma-fuel systems, the processes of plasma preparation and/or processing of solid fuels are carried out. The basic principle of the operation of plasma-fuel systems is the organization of electrothermochemical preparation and/or processing of coal dust in electric arc plasma. The use of plasma-fuel systems makes it possible to expand the range of coals burned in the same boiler and, ultimately, reduce the sensitivity of pulverized coal boilers to fuel quality. It is shown that an important advantage of the plasma technology is the quick payback and low cost of its implementation, while reducing emissions of nitrogen oxides, sulfur and vanadium pentoxide and fuel burnout during plasma stabilization of a pulverized coal flame. This makes them practically the only real means of improving the environmental and economic efficiency of using solid fuels and replacing scarce and expensive fuel oil in the fuel balance of TPPs in the required volumes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Udler, E. I. y D. V. Khalturin. "Preliminary purification of fuel heated in machines’ fuel systems". Traktory i sel hozmashiny 80, n.º 7 (15 de julio de 2013): 47–49. http://dx.doi.org/10.17816/0321-4443-65788.

Texto completo
Resumen
Construction of a filter for fuel purification and heating during machine exploitation under low temperatures is presented. A calculation method of fuel heating systems in fuel systems of diesel machines is suggested.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

GOEBEL, S., D. MILLER, W. PETTIT y M. CARTWRIGHT. "Fast starting fuel processor for automotive fuel cell systems". International Journal of Hydrogen Energy 30, n.º 9 (agosto de 2005): 953–62. http://dx.doi.org/10.1016/j.ijhydene.2005.01.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Furutani, Hirohide, Norihiko Iki y Taku Tsujimura. "Engine Systems for Hydrogen Fuel". Journal of The Japan Institute of Marine Engineering 51, n.º 1 (2016): 91–96. http://dx.doi.org/10.5988/jime.51.91.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

San Martín, J. I., I. Zamora, J. J. San Martín, V. Aperribay y P. Eguía. "Trigeneration systems with fuel cells". Renewable Energy and Power Quality Journal 1, n.º 06 (marzo de 2008): 135–40. http://dx.doi.org/10.24084/repqj06.245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Murko, Vasily I., Vladimir A. Kulagin y Marina P. Baranova. "Obtaining Stable Binary Fuel Systems". Journal of Siberian Federal University. Engineering & Technologies 10, n.º 8 (diciembre de 2017): 985–92. http://dx.doi.org/10.17516/1999-494x-2017-10-8-985-992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

McGowen, H. y L. Nilsen. "Improved Navy Ship Fuel Systems". Naval Engineers Journal 111, n.º 3 (mayo de 1999): 71–84. http://dx.doi.org/10.1111/j.1559-3584.1999.tb01963.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

McGowen, Hillery y L. Nilsen. "Improved Navy Ship Fuel Systems". Naval Engineers Journal 111, n.º 5 (septiembre de 1999): 92–93. http://dx.doi.org/10.1111/j.1559-3584.1999.tb02015.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Demirbas, Ayhan. "Combustion Systems for Biomass Fuel". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29, n.º 4 (abril de 2007): 303–12. http://dx.doi.org/10.1080/009083190948667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lee, J. H. y T. R. Lalk. "Modeling fuel cell stack systems". Journal of Power Sources 73, n.º 2 (junio de 1998): 229–41. http://dx.doi.org/10.1016/s0378-7753(97)02812-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Stefanopoulou, Anna G. "Mechatronics in Fuel Cell Systems". IFAC Proceedings Volumes 37, n.º 14 (septiembre de 2004): 531–42. http://dx.doi.org/10.1016/s1474-6670(17)31159-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hadley, J. "Tribology of aviation fuel systems". Tribology International 23, n.º 4 (agosto de 1990): 285–86. http://dx.doi.org/10.1016/0301-679x(90)90035-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Stefanopoulou, Anna G. y Kyung-Won Suh. "Mechatronics in fuel cell systems". Control Engineering Practice 15, n.º 3 (marzo de 2007): 277–89. http://dx.doi.org/10.1016/j.conengprac.2005.12.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Shlenskii, M. N. y B. V. Kuteev. "APPLICATIONS OF FUSION-FISSION HYBRID SYSTEMS FOR NUCLEAR FUEL CYCLE". Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, n.º 2 (2021): 139–44. http://dx.doi.org/10.21517/0202-3822-2021-44-2-139-144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Mal'chuk, V. I., A. Yu Dunin, I. V. Alekseev, Yu V. Trofimenko y S. M. Kalinina. "Fuel systems for feeding mixed fuels in high-speed diesel engines". Traktory i sel hozmashiny 84, n.º 9 (15 de septiembre de 2017): 3–10. http://dx.doi.org/10.17816/0321-4443-66310.

Texto completo
Resumen
The article presents the results of the assembly and testing of the fuel system variants developed at the Moscow State Automobile and Road Technical University for the supply of mixed fuel with the possibility of changing their composition during the injection process. The nozzle housing for mixed fuel differs from the housing of the serial product by the presence of two channels for supplying to the atomizer, respectively, the main fuel and additive. The nozzle is equipped with a sprayer, which also has channels for supplying diesel and alternative fuels. The supply of diesel fuel through the axial channel in the nozzle of the nebulizer is also of fundamental importance, since it inevitably falls into the gap between the needle and the body and thereby facilitates the lubrication of this precision pair. Mixing of the components of the mixture is carried out in the cavity located at the base of the locking cone of the needle. This is another principal feature of the nozzle atomizer design, intended for mixed fuel. Motor fuel mixture research was carried out on a single-cylinder engine mounted on the universal crate of IT-9 (1 Ch 10.5 / 12). It is shown that an increase in the proportion of water in a mixture with diesel fuel leads to an improvement in the composition of combustion products in diesel. Thus, with a 50 % water content, carbon emissions are reduced by almost 10 times, nitrogen oxides by a factor of 2,6, and carbon oxide by a factor of 2,5. The working capacity of the development during its operation as a part of the diesel engine (2 Ch × 10.5 / 12) is shown and the possibility of improving its ecological characteristics with a reduction in the consumption of diesel fuel by partial replacement with ethanol is demonstrated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Danial Doss, E., R. Kumar, R. K. Ahluwalia y M. Krumpelt. "Fuel processors for automotive fuel cell systems: a parametric analysis". Journal of Power Sources 102, n.º 1-2 (diciembre de 2001): 1–15. http://dx.doi.org/10.1016/s0378-7753(01)00784-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Shin, Donghwa, Kyungsoo Lee y Naehyuck Chang. "Fuel economy analysis of fuel cell and supercapacitor hybrid systems". International Journal of Hydrogen Energy 41, n.º 3 (enero de 2016): 1381–90. http://dx.doi.org/10.1016/j.ijhydene.2015.10.103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Moore, Robert M., Guenter Randolf, Maheboob B. Virji y Karl-Heinz Hauer. "Fuel Cell Hardware-in-Loop for PEM Fuel Cell Systems". ECS Transactions 5, n.º 1 (19 de diciembre de 2019): 309–19. http://dx.doi.org/10.1149/1.2729013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Pysar, Nadiia, Viktoriia Chornii, Andriy Bandura y Yevgen Khlobystov. "Methods for estimating “Fuel poverty” in public administration and management systems". Problems and Perspectives in Management 16, n.º 2 (13 de junio de 2018): 341–52. http://dx.doi.org/10.21511/ppm.16(2).2018.31.

Texto completo
Resumen
The Ukrainian energy market has been analyzed region-wise in terms of consumption of fuel and energy resources by household sector. Critical aspects of improving energy security have been reflected in the context of the use of energy resources. The principal directions of the socially responsible market economy system have been offered in the light of the country’s economic security in terms of overcoming “fuel poverty”. Cognitive features of the “fuel poverty” phenomenon have been defined. Mathematical modeling of the “fuel poverty” index has been carried out using the following approaches: “after fuel cost poverty”; energy expenditure above 10% of disposable income; the Low Income – High Costs, where households with relatively high energy costs and low income are emphasized. A model of the final calculation of household energy costs has been developed for the purpose of optimal management. The graphical abstract of the obtained “fuel poverty” index solutions has been presented, with the upper left corner – low income – high costs – serving as a critical zone. The block diagram of improving the socially responsible market economy system in the light of overcoming “fuel poverty” has been offered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Jain, S. R. "Spontaneously Igniting Hybrid Fuel-Oxidiser Systems." Defence Science Journal 45, n.º 1 (1 de enero de 1995): 5–16. http://dx.doi.org/10.14429/dsj.45.4096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Friedrich, K. A., Josef Kallo, Johannes Schirmer y Gerrit Schmitthals. "Fuel Cell Systems for Aircraft Application". ECS Transactions 25, n.º 1 (17 de diciembre de 2019): 193–202. http://dx.doi.org/10.1149/1.3210571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Martin, Jerry L. y Paul Osenar. "Portable Military Fuel Cell Power Systems". ECS Transactions 25, n.º 1 (17 de diciembre de 2019): 249–57. http://dx.doi.org/10.1149/1.3210576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Fuente Cuesta, Aida, Cristian Savaniu, Kevin D. Pointon y John T. S. Irvine. "'Waste-to-Energy’ Fuel Cell Systems". ECS Transactions 91, n.º 1 (10 de julio de 2019): 1581–90. http://dx.doi.org/10.1149/09101.1581ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Lai, Jih-Sheng y Michael W. Ellis. "Fuel Cell Power Systems and Applications". Proceedings of the IEEE 105, n.º 11 (noviembre de 2017): 2166–90. http://dx.doi.org/10.1109/jproc.2017.2723561.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Jansen, D. y M. Mozaffarian. "Advanced fuel cell energy conversion systems". Energy Conversion and Management 38, n.º 10-13 (julio de 1997): 957–67. http://dx.doi.org/10.1016/s0196-8904(96)00126-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

McConnell, Vicki P. "Graphitic materials in fuel cell systems". Reinforced Plastics 50, n.º 3 (marzo de 2006): 26–32. http://dx.doi.org/10.1016/s0034-3617(06)70939-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Devitt, Jason. "Propane Fuel Processing for SOFC Systems". ECS Proceedings Volumes 2003-07, n.º 1 (enero de 2003): 1276–85. http://dx.doi.org/10.1149/200307.1276pv.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Glöckner, Ronny, Øystein Ulleberg, Ragne Hildrum, Catherine E. Grégoire y Padró Ife. "Integrating Renewables for Remote Fuel Systems". Energy & Environment 13, n.º 4-5 (septiembre de 2002): 735–47. http://dx.doi.org/10.1260/095830502320939660.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hernández, S., L. Solarino, G. Orsello, N. Russo, D. Fino, G. Saracco y V. Specchia. "Desulfurization processes for fuel cells systems". International Journal of Hydrogen Energy 33, n.º 12 (junio de 2008): 3209–14. http://dx.doi.org/10.1016/j.ijhydene.2008.01.047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Djafour, A., M. S. Aida y B. Azoui. "Photovoltaic Assisted Fuel Cell Power Systems". Energy Procedia 50 (2014): 306–13. http://dx.doi.org/10.1016/j.egypro.2014.06.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Rother, Marc, Stephen Kempfer y Mark Polifke. "Intelligent fuel systems of the future". ATZ worldwide 105, n.º 6 (junio de 2003): 16–19. http://dx.doi.org/10.1007/bf03224607.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Karakoc, Hikmet, Adnan Midilli y Onder Turan. "Green hydrogen and fuel cell systems". International Journal of Energy Research 37, n.º 10 (10 de julio de 2013): 1141. http://dx.doi.org/10.1002/er.3037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Farr, Angela K. y David Atkins. "Fuel Supply Planning for Small-Scale Biomass Heating Systems". Western Journal of Applied Forestry 25, n.º 1 (1 de enero de 2010): 18–21. http://dx.doi.org/10.1093/wjaf/25.1.18.

Texto completo
Resumen
Abstract The Fuels for Schools and Beyond initiative partners have gained experience assisting with installation and fuel supply planning for woody biomass heating systems in six western states. In attempting to use forest management waste or slash that would otherwise be piled and burned, thepartners are promoting changes in currently available biomass systems technology and current forest practices. The many benefits of forest biomass heat can be realized today with careful communication about fuel supply specifications. Guidance based on the partners' experience in fuel supplyplanning and defining fuel specifications is presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Flynn, P. L., B. D. Hsu y G. L. Leonard. "Coal-Fueled Diesel Engine Progress at GE Transportation Systems". Journal of Engineering for Gas Turbines and Power 112, n.º 3 (1 de julio de 1990): 369–75. http://dx.doi.org/10.1115/1.2906504.

Texto completo
Resumen
A coal-fueled diesel engine holds the promise of a rugged, modular heat engine that uses cheap, abundant fuel. Economic studies have indicated attractive returns at moderate diesel fuel prices. The compositions of coal-water fuels are being expanded to cover the major coal sources. Combustion has been developed at 1000 rpm with mechanical and electronic fuel injection. Dual fuel operation can run the engine over the load range. Erosion of fuel nozzles has been controlled with diamond compacts. Wear of piston rings and cylinder liners can be controlled with tungsten carbide coatings. Emission measurements show higher particulates and SO2 and lower NOx, CO, and HC. Particulate and SO2 control measures are being investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía