Índice
Literatura académica sobre el tema "Fuel cell/battery diagnosis/prognosis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Fuel cell/battery diagnosis/prognosis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Fuel cell/battery diagnosis/prognosis"
Yun, Xiong, Zai Min Zhong, Ze Chang Sun, Tong Zhang y Ting Ting Yin. "Research on Fault Diagnosis Method of FCV Power Battery Based on Physical Model". Applied Mechanics and Materials 52-54 (marzo de 2011): 1438–44. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.1438.
Texto completoChen, Tony HT, Joshua Xu, Hassan Zahreddine, Brian Leber, Irwin Walker, Tobias Berg, Kylie L. Lepic et al. "Fitness Assessment of Elderly Patients with AML and Outcomes". Blood 138, Supplement 1 (5 de noviembre de 2021): 3379. http://dx.doi.org/10.1182/blood-2021-152612.
Texto completoYasir, Fahim y Matthieu Dubarry. "Big Data for the Diagnosis and Prognosis of Deployed Energy Storage Systems". ECS Meeting Abstracts MA2024-02, n.º 3 (22 de noviembre de 2024): 359. https://doi.org/10.1149/ma2024-023359mtgabs.
Texto completoBrunner, Doug, Ajay K. Prasad, Suresh G. Advani y Brian W. Peticolas. "A robust cell voltage monitoring system for analysis and diagnosis of fuel cell or battery systems". Journal of Power Sources 195, n.º 24 (15 de diciembre de 2010): 8006–12. http://dx.doi.org/10.1016/j.jpowsour.2010.06.054.
Texto completoBrancato, Lorenzo, Yiqi Jia, Marco Giglio y Francesco Cadini. "Prognosis of Internal Short Circuit Formation in Lithium-Ion Batteries: An Integrated Approach Using Extended Kalman Filter and Regression Model". PHM Society European Conference 8, n.º 1 (27 de junio de 2024): 8. http://dx.doi.org/10.36001/phme.2024.v8i1.4011.
Texto completoLee, Chi-Yuan, Chia-Hung Chen, John-Shong Cheong, Yun-Hsiu Chien y Yi-Chuan Lin. "Flexible 5-in-1 Microsensor Embedded in the Proton Battery for Real-Time Microscopic Diagnosis". Membranes 11, n.º 4 (8 de abril de 2021): 276. http://dx.doi.org/10.3390/membranes11040276.
Texto completoZhou, Jialong, Jinhai Jiang, Fulin Fan, Chuanyu Sun, Zhen Dong y Kai Song. "Real-Time Impedance Detection for PEM Fuel Cell Based on TAB Converter Voltage Perturbation". Energies 17, n.º 17 (29 de agosto de 2024): 4320. http://dx.doi.org/10.3390/en17174320.
Texto completoGoldammer, Erik, Marius Gentejohann, Michael Schlüter, Daniel Weber, Wolfgang Wondrak, Sibylle Dieckerhoff, Clemens Gühmann y Julia Kowal. "The Impact of an Overlaid Ripple Current on Battery Aging: The Development of the SiCWell Dataset". Batteries 8, n.º 2 (31 de enero de 2022): 11. http://dx.doi.org/10.3390/batteries8020011.
Texto completoSaldanha, Emily, Amanda Howard, Yunxiang Chen, Yucheng Fu, Jie Bao, Wei Wang y Vincent Sprenkle. "Deep Learning Models for Forecasting of Long Duration Redox Flow Battery Performance and Degradation". ECS Meeting Abstracts MA2024-02, n.º 3 (22 de noviembre de 2024): 389. https://doi.org/10.1149/ma2024-023389mtgabs.
Texto completoMöller, Marius C. y Stefan Krauter. "Dimensioning and Lifetime Prediction Model for a Hybrid, Hydrogen-Based Household PV Energy System Using Matlab/Simulink". Solar 3, n.º 1 (4 de enero de 2023): 25–48. http://dx.doi.org/10.3390/solar3010003.
Texto completoTesis sobre el tema "Fuel cell/battery diagnosis/prognosis"
Bäumler, Antoine. "Gestion de l'énergie basée sur le diagnostic/pronostic de défaut d'un véhicule électrique hybride à pile à combustible/batterie". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST113.
Texto completoThe concept of hybrid energy systems have considerably improved dynamic performance, energy efficiency and lifespan of energetic systems, which is very promising for the powertrain system in electrified vehicles. Especially the effectiveness of hybrid system based on polymer electrolyte membrane fuel cells (PEMFCs) and lithium-ion batteries (LIBs) has been highlighted by many research projects in recent years. In such system, energy management strategy (EMS) plays a critical role in the supervisory level. It manage the power flow among the different power sources, to meet the power demand and to improve the operation efficiency. A smart EMS should be supported by reliable diagnostic/prognostic results of the single power source. Namely, the topic of diagnostic/prognostic of PEMFCs and LIBs is indispensable when designing a health-conscious EMS. However, the current research work of designing EMS and executing diagnostic/prognostic of ESS is usually independent of each other. Therefore, in this PhD project, integrating the diagnosis/prognosis module of each power source into EMS design is the primary aim. Especially, the proposed health-aware EMS and the module of diagnostic/prognostic will be based on artificial intelligence techniques through operation data self-learning process