Artículos de revistas sobre el tema "Froth flotation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Froth flotation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Aldrich, Chris y Xiu Liu. "Monitoring of Flotation Systems by Use of Multivariate Froth Image Analysis". Minerals 11, n.º 7 (25 de junio de 2021): 683. http://dx.doi.org/10.3390/min11070683.
Texto completoWAKAMATSU, Takahide. "Froth flotation." Hyomen Kagaku 12, n.º 1 (1991): 28–33. http://dx.doi.org/10.1380/jsssj.12.28.
Texto completoHan, K. N. "Froth flotation". International Journal of Mineral Processing 28, n.º 1-2 (febrero de 1990): 152–54. http://dx.doi.org/10.1016/0301-7516(90)90034-v.
Texto completoRalston, J. A. "Froth flotation". Minerals Engineering 2, n.º 2 (enero de 1989): 272. http://dx.doi.org/10.1016/0892-6875(89)90049-6.
Texto completoYianatos, Juan, Paulina Vallejos, Luis Vinnett y Sebastián Arriagada. "Semi-Continuous Froth Discharge to Reduce Entrainment of Fine Particles in Flotation Cells Subject to Low-Mineralized Froths". Minerals 10, n.º 8 (5 de agosto de 2020): 695. http://dx.doi.org/10.3390/min10080695.
Texto completoWang, Lei y Chao Li. "A Brief Review of Pulp and Froth Rheology in Mineral Flotation". Journal of Chemistry 2020 (8 de febrero de 2020): 1–16. http://dx.doi.org/10.1155/2020/3894542.
Texto completoBarbian, N., E. Ventura-Medina y J. J. Cilliers. "Dynamic froth stability in froth flotation". Minerals Engineering 16, n.º 11 (noviembre de 2003): 1111–16. http://dx.doi.org/10.1016/j.mineng.2003.06.010.
Texto completoMatis, K. A. y P. Mavros. "Foam/Froth Flotation". Separation and Purification Methods 20, n.º 2 (enero de 1991): 163–98. http://dx.doi.org/10.1080/03602549108021414.
Texto completoJera, Tawona M. y Clayton Bhondayi. "A Review of Flotation Physical Froth Flow Modifiers". Minerals 11, n.º 8 (10 de agosto de 2021): 864. http://dx.doi.org/10.3390/min11080864.
Texto completoOstadrahimi, Mahdi y Saeed Farrokhpay. "Effect of detergents on froth stability and flotation separation". Tenside Surfactants Detergents 59, n.º 2 (28 de febrero de 2022): 176–81. http://dx.doi.org/10.1515/tsd-2021-2392.
Texto completoHe, Gui Chun, Jin Ni Feng, Yi Peng Wu, Hua Mei Xiang y Mei Chao Qi. "Relationship between Surface Froth Features and Flotation Indexes in the Flotation of a Sulphide Copper Ore". Advanced Materials Research 503-504 (abril de 2012): 650–53. http://dx.doi.org/10.4028/www.scientific.net/amr.503-504.650.
Texto completoMartinez, Jose, Miguel Maldonado y Leopoldo Gutierrez. "A Method to Predict Water Recovery Rate in the Collection and Froth Zone of Flotation Systems". Minerals 10, n.º 7 (16 de julio de 2020): 630. http://dx.doi.org/10.3390/min10070630.
Texto completoDuoc, Tran Van, Nguyen Hoang Son, Nhu Thi Kim Dung y Vu Thi Chinh. "Recovery of clean coal from blast furnace dusts by flotation column". Journal of Mining and Earth Sciences 61, n.º 1 (28 de febrero de 2020): 124–31. http://dx.doi.org/10.46326/jmes.2020.61(1).14.
Texto completoKhan, Shaihroz, Omar Bashir Wani, Mohammad Shoaib, John Forster, Rana N. Sodhi, Darryel Boucher y Erin R. Bobicki. "Mineral carbonation for serpentine mitigation in nickel processing: a step towards industrial carbon capture and storage". Faraday Discussions 230 (2021): 172–86. http://dx.doi.org/10.1039/d1fd00006c.
Texto completoMorozov, Iurii, Tatiana Intogarova, Olga Valieva y Iuliia Donets. "Flotation classification in closed-circuit grinding as a way of reducing sulphide ore overgrinding". Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal, n.º 1 (17 de febrero de 2021): 85–96. http://dx.doi.org/10.21440/0536-1028-2021-1-85-96.
Texto completoJera, Tawona Martin y Clayton Bhondayi. "A Review on Froth Washing in Flotation". Minerals 12, n.º 11 (19 de noviembre de 2022): 1462. http://dx.doi.org/10.3390/min12111462.
Texto completoHe, Mingfang, Chunhua Yang, Weihua Gui y Yiqiu Ling. "Performance Recognition for Sulphur Flotation Process Based on Froth Texture Unit Distribution". Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/530349.
Texto completoJuřicová, Hana y František Tichánek. "Reflotation of Coal Flotation Tailings using Foam Separation / Reflotace Černouhelných Flotačních Hlušin Pomocí Pěnové Separace". GeoScience Engineering 57, n.º 1 (1 de marzo de 2011): 9–13. http://dx.doi.org/10.2478/gse-2014-0019.
Texto completoSilva, A. C., D. N. Sousa, E. M. S. Silva, T. P. Fontes, R. S. Tomaz y M. R. Barros. "Temperature Influence in Cornstarch Gelatinization for Froth Flotation". International Proceedings of Chemical, Biological and Environmental Engineering 96 (2016): 7–11. http://dx.doi.org/10.7763/ipcbee.2016.v96.2.
Texto completoLASKOWSKI, J. S. "Frothers and Flotation Froth". Mineral Processing and Extractive Metallurgy Review 12, n.º 1 (enero de 1993): 61–89. http://dx.doi.org/10.1080/08827509308935253.
Texto completoLi, Zongxin, Yu Fu, Zhan Li, Nan Nan, Yimin Zhu y Yiwen Li. "Froth flotation giant surfactants". Polymer 162 (enero de 2019): 58–62. http://dx.doi.org/10.1016/j.polymer.2018.12.023.
Texto completoCao, Qin Bo, Shu Ming Wen, Chen Xiu Li, Shao Jun Bai y Dan Liu. "Application of New Flotation Machine on Phosphate Flotation". Advanced Materials Research 616-618 (diciembre de 2012): 624–27. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.624.
Texto completoGalas, Jacek y Dariusz Litwin. "Machine Learning Technique for Recognition of Flotation Froth Images in a Nonstable Flotation Process". Minerals 12, n.º 8 (20 de agosto de 2022): 1052. http://dx.doi.org/10.3390/min12081052.
Texto completoBournival, Ghislain, Seher Ata y Graeme J. Jameson. "Bubble and Froth Stabilizing Agents in Froth Flotation". Mineral Processing and Extractive Metallurgy Review 38, n.º 6 (27 de abril de 2017): 366–87. http://dx.doi.org/10.1080/08827508.2017.1323747.
Texto completoLi, Chao, Kym Runge, Fengnian Shi y Saeed Farrokhpay. "Effect of flotation froth properties on froth rheology". Powder Technology 294 (junio de 2016): 55–65. http://dx.doi.org/10.1016/j.powtec.2016.02.018.
Texto completoTaner, Hasan Ali y Vildan Onen. "Study of chalcopyrite flotation in the presence of illite using a design of experiments approach". Clay Minerals 56, n.º 3 (septiembre de 2021): 197–209. http://dx.doi.org/10.1180/clm.2021.35.
Texto completoJiang, Haibing, Jiufen Liu, Huaifa Wang, Runquan Yang, Wenzhi Zhao, Duo Yang, Song Yin y Liang Shen. "Study on Combined Vacuum–Mechanical Defoaming Technology for Flotation Froth and Its Mechanism". Processes 10, n.º 6 (14 de junio de 2022): 1183. http://dx.doi.org/10.3390/pr10061183.
Texto completoRivard, Benoit, Jilu Feng, Derek Russell, Vivek Bhushan y Michael Lipsett. "Hyperspectral Characteristics of Oil Sand, Part 1: Prediction of Processability and Froth Quality from Measurements of Ore". Minerals 10, n.º 12 (18 de diciembre de 2020): 1138. http://dx.doi.org/10.3390/min10121138.
Texto completoNhu, Dung Kim Thi, Son Hoang Nguyen, Chinh Thi Vu y Duoc Van Tran. "Study on the effects of some parameters on the flotation performance of Vang Danh coal fines -0.3 mm in the reflux flotation cell". Journal of Mining and Earth Sciences 61, n.º 2 (29 de abril de 2020): 68–75. http://dx.doi.org/10.46326/jmes.2020.61(2).08.
Texto completoPiñeres Mendoza, Jorge Luís, Juan Manuel Barraza Burgos y Astrid del Socorro Blandón Montes. "Flotation kinetic constants of two Colombian coals' vitrinite maceral". Ingeniería e Investigación 29, n.º 3 (1 de septiembre de 2009): 29–35. http://dx.doi.org/10.15446/ing.investig.v29n3.15179.
Texto completoLiu, Hongchang, Mingfang He, Weiwei Cai, Guoxiong Zhou, Yanfeng Wang y Liujun Li. "Working Condition Recognition of a Mineral Flotation Process Using the DSFF-DenseNet-DT". Applied Sciences 12, n.º 23 (29 de noviembre de 2022): 12223. http://dx.doi.org/10.3390/app122312223.
Texto completoRomachev, Artem, Valentin Kuznetsov, Egor Ivanov y Benndorf Jörg. "Flotation froth feature analysis using computer vision technology". E3S Web of Conferences 192 (2020): 02022. http://dx.doi.org/10.1051/e3sconf/202019202022.
Texto completoLi, Chao, Kym Runge, Fengnian Shi y Saeed Farrokhpay. "Effect of froth rheology on froth and flotation performance". Minerals Engineering 115 (enero de 2018): 4–12. http://dx.doi.org/10.1016/j.mineng.2017.10.003.
Texto completoMa, Mark. "Froth Flotation of Iron Ores". International Journal of Mining Engineering and Mineral Processing 1, n.º 2 (31 de agosto de 2012): 56–61. http://dx.doi.org/10.5923/j.mining.20120102.06.
Texto completoCastro, Sergio y Janusz S. Laskowski. "Froth Flotation in Saline Water". KONA Powder and Particle Journal 29 (2011): 4–15. http://dx.doi.org/10.14356/kona.2011005.
Texto completoLepage, Mark R., Cesar O. Gomez y Kristian E. Waters. "Using Top-of-Froth Conductivity to Infer Water Overflow Rate in a Two-Phase Lab-Scale Flotation Column". Minerals 12, n.º 4 (7 de abril de 2022): 454. http://dx.doi.org/10.3390/min12040454.
Texto completoManono, Malibongwe S., Katlego Matibidi, Iyiola O. Otunniyi, Catherine K. Thubakgale, Kirsten C. Corin y Jenny G. Wiese. "The Behaviour of Mixtures of Sodium Iso-Butyl Xanthate and Sodium Di-Ethyl Dithiophosphate during the Flotation of a Cu-Ni-Pt Ore in Degrading Water Quality". Minerals 10, n.º 2 (31 de enero de 2020): 123. http://dx.doi.org/10.3390/min10020123.
Texto completoNichols, Keir A. y Brent M. Goehring. "Isolation of quartz for cosmogenic in situ <sup>14</sup>C analysis". Geochronology 1, n.º 1 (9 de octubre de 2019): 43–52. http://dx.doi.org/10.5194/gchron-1-43-2019.
Texto completoRuismäki, Ronja, Tommi Rinne, Anna Dańczak, Pekka Taskinen, Rodrigo Serna-Guerrero y Ari Jokilaakso. "Integrating Flotation and Pyrometallurgy for Recovering Graphite and Valuable Metals from Battery Scrap". Metals 10, n.º 5 (21 de mayo de 2020): 680. http://dx.doi.org/10.3390/met10050680.
Texto completoAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede y Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production". European Journal of Engineering Research and Science 5, n.º 5 (31 de mayo de 2020): 622–25. http://dx.doi.org/10.24018/ejers.2020.5.5.1933.
Texto completoAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede y Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production". European Journal of Engineering and Technology Research 5, n.º 5 (31 de mayo de 2020): 622–25. http://dx.doi.org/10.24018/ejeng.2020.5.5.1933.
Texto completoRivard, Benoit, Jilu Feng, Derek Russell, Vivek Bushan y Michael Lipsett. "Hyperspectral Characteristics of Oil Sand, Part 2: Prediction of Froth Characteristics from Measurements of Froth". Minerals 10, n.º 12 (18 de diciembre de 2020): 1137. http://dx.doi.org/10.3390/min10121137.
Texto completoMdoe, Reuben J. y Anand Anupam. "Recovery of Coal Values from Middling and Rejects by Froth Flotation and Mozley Mineral Separation". Studies in Engineering and Technology 8, n.º 1 (18 de junio de 2021): 40. http://dx.doi.org/10.11114/set.v8i1.4785.
Texto completoLu, Fanlei, Weihua Gui, Chunhua Yang y Xiaoli Wang. "Two-Step Optimal-Setting Control for Reagent Addition in Froth Flotation Based on Belief Rule Base". Processes 10, n.º 10 (25 de septiembre de 2022): 1933. http://dx.doi.org/10.3390/pr10101933.
Texto completoLam, W. W., C. Payette, V. A. Munoz, R. J. Mikula y J. Tyerman. "Flotation of Athabasca oil sands: Microscopical determination of structure of bituminous froth". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 368–69. http://dx.doi.org/10.1017/s0424820100122241.
Texto completoManono, Malibongwe S., Katlego Matibidi, Kirsten C. Corin, Catherine K. Thubakgale, Iyiola O. Otunniyi y Jenny G. Wiese. "Specific Ion Effects on the Behavior of Mixtures of Sodium Iso-Butyl Xanthate and Sodium Diethyl Dithiophosphate during the Flotation of a Cu-Ni-PGM Ore: Effects of CaCl2 and NaCl". Environmental Sciences Proceedings 6, n.º 1 (7 de julio de 2021): 22. http://dx.doi.org/10.3390/iecms2021-10632.
Texto completoNakhaei, Fardis, Samira Rahimi y Mohammadbagher Fathi. "Prediction of Sulfur Removal from Iron Concentrate Using Column Flotation Froth Features: Comparison of k-Means Clustering, Regression, Backpropagation Neural Network, and Convolutional Neural Network". Minerals 12, n.º 11 (12 de noviembre de 2022): 1434. http://dx.doi.org/10.3390/min12111434.
Texto completoBarbian, N., K. Hadler, E. Ventura-Medina y J. J. Cilliers. "The froth stability column: linking froth stability and flotation performance". Minerals Engineering 18, n.º 3 (marzo de 2005): 317–24. http://dx.doi.org/10.1016/j.mineng.2004.06.010.
Texto completoAkande, S., E. O. Ajaka, O. O. Alabi y T. A. Olatunji. "Effects of varied process parameters on froth flotation efficiency: A case study of Itakpe iron ore". Nigerian Journal of Technology 39, n.º 3 (16 de septiembre de 2020): 807–15. http://dx.doi.org/10.4314/njt.v39i3.21.
Texto completoDerhy, Manar, Yassine Taha, Rachid Hakkou y Mostafa Benzaazoua. "Review of the Main Factors Affecting the Flotation of Phosphate Ores". Minerals 10, n.º 12 (10 de diciembre de 2020): 1109. http://dx.doi.org/10.3390/min10121109.
Texto completo