Literatura académica sobre el tema "Frictional contact model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Frictional contact model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Frictional contact model"
Chang, L. y H. Zhang. "A Mathematical Model for Frictional Elastic-Plastic Sphere-on-Flat Contacts at Sliding Incipient". Journal of Applied Mechanics 74, n.º 1 (9 de diciembre de 2005): 100–106. http://dx.doi.org/10.1115/1.2178838.
Texto completoYu, Chunxiao, Dinghui Jing, Chang Fu y Yanfang Yang. "A Kind of FM-BEM Penalty Function Method for a 3D Elastic Frictional Contact Nonlinear System". Journal of Mathematics 2021 (13 de enero de 2021): 1–11. http://dx.doi.org/10.1155/2021/6626647.
Texto completoLi, Zheng y Ken Mao. "Frictional Effects on Gear Tooth Contact Analysis". Advances in Tribology 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/181048.
Texto completoWingertszahn, Patrick, Oliver Koch, Lorenzo Maccioni, Franco Concli y Bernd Sauer. "Predicting Friction of Tapered Roller Bearings with Detailed Multi-Body Simulation Models". Lubricants 11, n.º 9 (1 de septiembre de 2023): 369. http://dx.doi.org/10.3390/lubricants11090369.
Texto completoBAJKOWSKI, J., J. R. FERNÁNDEZW, K. L. KUTTLER y M. SHILLOR. "A thermoviscoelastic beam model for brakes". European Journal of Applied Mathematics 15, n.º 2 (abril de 2004): 181–202. http://dx.doi.org/10.1017/s0956792503005370.
Texto completoABDALLA, W. S., S. S. ALI-ELDIN y M. R. GHAZY. "ADAPTIVE INCREMENTAL FINITE ELEMENT PROCEDURE FOR SOLVING ELASTOPLASTIC FRICTIONAL CONTACT PROBLEMS SUBJECTED TO NORMAL AND TANGENTIAL LOADS". International Journal of Applied Mechanics 06, n.º 03 (6 de mayo de 2014): 1450031. http://dx.doi.org/10.1142/s1758825114500318.
Texto completoDickrell, P. L., W. G. Sawyer y A. Erdemir. "Fractional Coverage Model for the Adsorption and Removal of Gas Species and Application to Superlow Friction Diamond-Like Carbon". Journal of Tribology 126, n.º 3 (28 de junio de 2004): 615–19. http://dx.doi.org/10.1115/1.1739408.
Texto completoMurphey, Todd D. "Kinematic reductions for uncertain mechanical contact". Robotica 25, n.º 6 (noviembre de 2007): 751–64. http://dx.doi.org/10.1017/s0263574707003827.
Texto completoChang, L., Yongwu Zhao, P. B. Hall, R. Thom y C. Moore. "On Heat Generation in Rolling Contacts Under Boundary and Mixed Lubrication". Journal of Tribology 123, n.º 1 (17 de agosto de 2000): 61–66. http://dx.doi.org/10.1115/1.1330733.
Texto completoHeß, Markus y Valentin L. Popov. "Voltage-Induced Friction with Application to Electrovibration". Lubricants 7, n.º 12 (20 de noviembre de 2019): 102. http://dx.doi.org/10.3390/lubricants7120102.
Texto completoTesis sobre el tema "Frictional contact model"
Do, Nguyen Ba. "Modeling of Frictional Contact Conditions in Structures". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7123.
Texto completode, Carufel Jean. "Model predictive control of a manipulator arm with frictional/unilateral contact". Thesis, University of Ottawa (Canada), 1998. http://hdl.handle.net/10393/4114.
Texto completoDe, Carufel Jean. "Model predictive control of a manipulator arm with frictional/unilateral contact". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0002/NQ32441.pdf.
Texto completoNykänen, Robin. "Simulation of Bolted Joint with Frictional Contacts". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74490.
Texto completoDESHMUKH, DINAR V. "PHYSICS BASED REDUCED ORDER MODELS FOR FRICTIONAL CONTACTS". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115997302.
Texto completoGiacoma, Anthony. "Efficient acceleration techniques for non-linear analysis of structures with frictional contact". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0095.
Texto completoComputational mechanics is an essential tool for mechanical engineering purposes. Nowadays, numerical models have to take into account complex physical phenomenons to be even more realistic and become larger and larger. As a consequence, more and more computing capacities are required in order to tackle not only non-linear problems but also large scale problems. For that purpose, both computers and numerical methods have to be developed in order to solve them efficiently. In the last decades, model reduction methods show great abilities to assign such challenges. The frictional contact problem between elastic solids is particularly well-known for its difficulty. Because its governing laws are highly non-linear (non-smooth), prohibitive computational time can occur. In this dissertation, model reduction methods (both a posteriori and a priori approaches) are deployed in order to implement efficient numerical methods to solve frictional contact problem in the finite element framework. First, small perturbations hypothesis with a quasi-static evolution are assumed. Then, reducibility of some frictional solutions is emphasized and discussed using the singular value decomposition. In addition, a scale separability phenomenon is enlightened. Then, the non-linear large time increment method (LATIN) is introduced. Secondly, an accelerated LATIN method is suggested by drawing an analogy between previous scale separability observations and the non-linear multigrid full approximation scheme (FAS). This accelerated non-linear solver relies essentially on the a posteriori model reduction approach. A precomputation strategy for modes relying on surrogate models is also suggested. Next, the proper generalized decomposition (PGD) is used to implement a non-linear solver relying fundamentally on an a priori model reduction method. Finally, some extensions are given to assign parametric studies and to take into account an additional non-linearity such as elastoplastic constitutive laws
Filippis, Hugo de. "Dynamique non linéaire du contact inter-aubes de turbine : caractérisation expérimentale et simulation numérique". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2023. http://www.theses.fr/2023ECDL0056.
Texto completoWith a view of improving the performance and efficiency of the future generation of turbojet engines, and in order to comply with evolving environmental regulations concerning the various pollutants emitted by these machines, aerospace manufacturers are looking for suitable technological solutions. Among all the avenues studied by the manufacturers, increasing the rotational speed of the low-pressure turbine within the turbojet engine is envisaged to increase overall efficiency, in return for the reinforcement of complex vibratory phenomena which need to be taken into account during the design phase. In fact, the low-pressure turbine used in the LEAP generation of jet engines has the particularity of being made up of an assembly of blades whose geometry incorporates a shroud at the upper end of them. All the shrouds interlock with each other when the blades are mounted on the disc, thereby applying a static pre-load to the blades, thanks to a pre-twist angle provided for at the design stage. The function of this shroud is twofold: on the one hand, it serves to guarantee the tightness of the airfoil by limiting the fluid losses of th airflow passing through the blades, and on the other hand, it introduces frictional damping through contact between each blade fixed on the disc, thus reducing their vibration amplitude. The aim of this thesis is to reproduce the non-linear dynamic behavior of a low-pressure turbine blade on a numerical model, and to validate the results obtained using an academic experimental test bench. To this end, a bibliographical study is carried out to establish the state of the art of existing experimental test benches, their specific features, the observations made, the equipment used, etc., in order to position the academic test bench designed as part of this thesis in relation to the literature, taking into account the desired specifications. Once the design and manufacture of the test bench have been completed, the preliminary tests required for its debugging are carried out, including modal analysis of the blades and torsion tests for the calibration of strain gauges to measure the static pre-load when the blades are assembled on the test bench. Forced responses over the frequency range of the structure’s first bending mode have been achieved using step sinus excitation for different static pre-load configurations. Similarly, building the numerical model and calculating non-linear frequency responses requires an understanding and handling of specific methodologies, particularly for dealing with the non-linear forces associated with the frictional contact between the blades shrouds. An additional problem, intrinsic to the construction of the finite element model reproducing the static pre-loading by blade pre-twisting, is the non-coincidence of the meshes of the contact interfaces, necessitating firstly to constrain them to make them sufficiently regular in order to preserve the construction of node-to-node contact elements. Secondly, a method for dealing with this problem is proposed, based on a short bibliography, and taking into account the various calculation methodologies, additional frequency responses are then calculated
Cazier, Olivier. "Instabilités dynamiques de systèmes frottants en présence de variabilités paramétriques - Application au phénomène de crissement". Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2012. http://tel.archives-ouvertes.fr/tel-00830950.
Texto completowu, yunxian y yiyun wang. "A Drucker-Prager model for elastic contact with friction". Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16693.
Texto completoVadakkeveetil, Sunish. "Analytical Modeling for Sliding Friction of Rubber-Road Contact". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79596.
Texto completoMaster of Science
Libros sobre el tema "Frictional contact model"
Tanner, John A. Computational methods for frictional contact with applications to the space shuttle orbiter nose-gear tire: Development of frictional contact algorithm. Hampton, Va: Langley Research Center, 1996.
Buscar texto completoTanner, John A. Computational methods for frictional contact with applications to the space shuttle orbiter nose-gear tire: Comparisons of experimental measurements and analytical predictions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoAntràs, Pol. Contractual frictions and global sourcing. Cambridge, Mass: National Bureau of Economic Research, 2006.
Buscar texto completoJiří, Janušek y Krbec Miroslav 1950-, eds. Unilateral contact problems: Variational methods and existence theorems. Boca Raton: Chapman & Hall/CRC Press, 2005.
Buscar texto completoAwrejcewicz, J. Nonsmooth dynamics of contacting thermoelastic bodies. New York, NY: Springer, 2009.
Buscar texto completoAwrejcewicz, J. Nonsmooth dynamics of contacting thermoelastic bodies. New York, NY: Springer, 2009.
Buscar texto completoYuriy, Pyr'yev, ed. Nonsmooth dynamics of contacting thermoelastic bodies. New York, NY: Springer, 2009.
Buscar texto completoDynamical Contact Problems with Friction: Models, Methods, Experiments and Applications. 2a ed. Springer, 2007.
Buscar texto completoSextro, Walter. Dynamical Contact Problems with Friction: Models, Methods, Experiments and Applications. Springer, 2010.
Buscar texto completoSextro, Walter. Dynamical Contact Problems with Friction: Models, Methods, Experiments and Applications. Springer, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Frictional contact model"
Barboteu, Mikael, David Danan y Mircea Sofonea. "A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties". En Advances in Mechanics and Mathematics, 249–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14490-0_10.
Texto completoMaiba, I. A., V. V. Maiba y D. V. Glazunov. "Mathematical Model of Railway Vehicle Moving Along Track with Nonlinear Variable Characteristic of Friction Ratio in Zone of Wheel Frictional Contact with Rail". En Lecture Notes in Mechanical Engineering, 1254–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54814-8_145.
Texto completoSextro, Walter. "Point Contact Model". En Dynamical Contact Problems with Friction, 29–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-46871-4_3.
Texto completoGoedecke, Andreas. "The MIMEAC Contact Model". En Transient Effects in Friction, 119–62. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1506-0_6.
Texto completoPopov, Valentin L. "The Prandtl-Tomlinson Model for Dry Friction". En Contact Mechanics and Friction, 155–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10803-7_11.
Texto completoPopov, Valentin L. "The Prandtl-Tomlinson Model for Dry Friction". En Contact Mechanics and Friction, 173–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53081-8_11.
Texto completoShillor, Meir, Mircea Sofonea y Józef Joachim Telega. "10 Slip or Temperature Dependent Frictional Contact". En Models and Analysis of Quasistatic Contact, 163–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44643-9_10.
Texto completoMróz, Zenon. "Contact Friction Models and Stability Problems". En Friction and Instabilities, 179–232. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-2534-2_5.
Texto completoStrömberg, Niclas, Lars Johansson y Anders Klarbring. "A Generalised Standard Model for Contact, Friction and Wear". En Contact Mechanics, 327–34. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1983-6_44.
Texto completoKonyukhov, Alexander y Karl Schweizerhof. "Experimental Validations of the Coupled Anistropic Adhesion-Friction Model". En Computational Contact Mechanics, 367–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31531-2_12.
Texto completoActas de conferencias sobre el tema "Frictional contact model"
Song, Peng y Vijay Kumar. "Distributed Compliant Model for Efficient Dynamic Simulation of Systems With Frictional Contacts". En ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/dac-48809.
Texto completoMa, Ou, Jianxun Liang y Steven Fillmore. "A 2D Bristle Friction Force Model for Contact Dynamics Simulation". En ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2600.
Texto completoJanko, Marco, Zhengqiao Zhao, Moshe Kam y Yon Visell. "A partial contact frictional force model for finger-surface interactions". En 2018 IEEE Haptics Symposium (HAPTICS). IEEE, 2018. http://dx.doi.org/10.1109/haptics.2018.8357185.
Texto completoFillmore, Steven, Jianxun Liang y Ou Ma. "Experimental Validation of a 2D Bristle Friction Force Model". En ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4031.
Texto completoLiu, Geng, Tianxiang Liu, Qin Xie y Fanghui Shi. "Thermal Elasto-Plastic Contact Model of Rough Surfaces". En World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63810.
Texto completoProvasi, Rodrigo, Fernando Geremias Toni y Clovis de Arruda Martins. "Frictional Flexible Pipe Model Using Macroelements". En ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18005.
Texto completoLi, Dongwu y Chao Xu. "Modelling of Mechanical Systems With Friction Interfaces Considering Variable Normal Contact Load and Tangential Micro/Macro Slip". En ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65995.
Texto completoNacivet, Samuel, Christophe Pierre, Fabrice Thouverez y Louis Jezequel. "Analysis of Periodic Frictional Contact in Finite Elements Problems". En ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21735.
Texto completoHuang, Jianmeng, Chenghui Gao, Youxi Lin y Xiezhao Lin. "Analysis of Contact Area Between an Elasto-Plastic Rough Body and a Flat Body Under Different Working Mode". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37443.
Texto completoGhafoor, Abdul, Jian S. Dai y Joseph Duffy. "Grasp Stiffness Matrix for Soft Finger Contact Model in Robotic Applications". En ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/mech-14110.
Texto completoInformes sobre el tema "Frictional contact model"
Dolado, Juan J., Etienne Lalé y Hélène Turon. Zero-hours Contracts in a Frictional Labor Market. CIRANO, enero de 2022. http://dx.doi.org/10.54932/hvdc9170.
Texto completoLever, James, Susan Taylor, Arnold Song, Zoe Courville, Ross Lieblappen y Jason Weale. The mechanics of snow friction as revealed by micro-scale interface observations. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42761.
Texto completoFernández Martín, Andrés y Adam Gulan. Interest Rates and Business Cycles in Emerging Economies: The Role of Financial Frictions. Inter-American Development Bank, noviembre de 2012. http://dx.doi.org/10.18235/0011424.
Texto completoBlyde, Juan S. y José Pineda. Microeconomic Flexibility, Creative Destruction and Trade. Inter-American Development Bank, diciembre de 2009. http://dx.doi.org/10.18235/0011076.
Texto completoAltinok, Ahmet y Diana E. Mac Donald. Designing the Menu of Licenses for Foster Care. Banco de México, diciembre de 2023. http://dx.doi.org/10.36095/banxico/di.2023.19.
Texto completoPullammanappallil, Pratap, Haim Kalman y Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Texto completoCarrasco, Alex y David Florián Hoyle. External Shocks and FX Intervention Policy in Emerging Economies. Inter-American Development Bank, agosto de 2021. http://dx.doi.org/10.18235/0003457.
Texto completoPalkovic, Steven, Yasamin Salamat, Brendon Willey y Simon Bellemare. PR-610-183867-R01 Fracture Toughness via In-ditch Non-destructive Testing - Validation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), septiembre de 2020. http://dx.doi.org/10.55274/r0011802.
Texto completoROTATIONAL RESISTANCE TEST OF A NEW ALUMINUM ALLOY PENETRATING (AAP) JOINT SYSTEM. The Hong Kong Institute of Steel Construction, junio de 2023. http://dx.doi.org/10.18057/ijasc.2023.19.2.4.
Texto completo