Siga este enlace para ver otros tipos de publicaciones sobre el tema: Frequency stability.

Artículos de revistas sobre el tema "Frequency stability"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Frequency stability".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Percival, D. B. "Characterization of frequency stability: frequency-domain estimation of stability measures". Proceedings of the IEEE 79, n.º 7 (julio de 1991): 961–72. http://dx.doi.org/10.1109/5.84973.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Chen, Chaoyong, Chunqing Gao, Huixing Dai y Qing Wang. "Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz". Chinese Optics Letters 20, n.º 4 (2022): 041402. http://dx.doi.org/10.3788/col202220.041402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Walls, F. L. y D. W. Allan. "Measurements of frequency stability". Proceedings of the IEEE 74, n.º 1 (1986): 162–68. http://dx.doi.org/10.1109/proc.1986.13429.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jaffe, S. M., M. Rochon y W. M. Yen. "Increasing the frequency stability of single‐frequency lasers". Review of Scientific Instruments 64, n.º 9 (septiembre de 1993): 2475–81. http://dx.doi.org/10.1063/1.1143906.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rutman, J. y F. L. Walls. "Characterization of frequency stability in precision frequency sources". Proceedings of the IEEE 79, n.º 7 (julio de 1991): 952–60. http://dx.doi.org/10.1109/5.84972.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rongcheng Li, Xiaming Liang, Ziyuan Jin, Liming Li y Yongshi Xia. "NIM frequency stability measurement system". IEEE Transactions on Instrumentation and Measurement 38, n.º 2 (abril de 1989): 537–40. http://dx.doi.org/10.1109/19.192341.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Litwin, C. "Fluctuations and low‐frequency stability". Physics of Fluids B: Plasma Physics 3, n.º 8 (agosto de 1991): 2170–73. http://dx.doi.org/10.1063/1.859631.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jefferies, S. M., P. L. Pallé, H. B. van der Raay, C. Régulo y T. Roca Cortés. "Frequency stability of solar oscillations". Nature 333, n.º 6174 (junio de 1988): 646–49. http://dx.doi.org/10.1038/333646a0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Matsko, A. B., A. A. Savchenkov, V. S. Ilchenko, D. Seidel y L. Maleki. "Optical-RF frequency stability transformer". Optics Letters 36, n.º 23 (23 de noviembre de 2011): 4527. http://dx.doi.org/10.1364/ol.36.004527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gelfer, Marylou Pausewang. "Stability in phonational frequency range". Journal of Communication Disorders 22, n.º 3 (junio de 1989): 181–92. http://dx.doi.org/10.1016/0021-9924(89)90015-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Yang, Ke y Wen Sun. "Frequency Stability Assessment of Power System Using Frequency Stability Indices and Artificial Neural Newwork". IOP Conference Series: Earth and Environmental Science 514 (3 de julio de 2020): 042057. http://dx.doi.org/10.1088/1755-1315/514/4/042057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

INABA, Hajime, Sho OKUBO y Masato WADA. "Frequency Stability Improvements and Evaluations of Optical Frequency Comb". Review of Laser Engineering 46, n.º 2 (2018): 61. http://dx.doi.org/10.2184/lsj.46.2_61.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Nguyen, N. M. y R. G. Meyer. "Start-up and frequency stability in high-frequency oscillators". IEEE Journal of Solid-State Circuits 27, n.º 5 (mayo de 1992): 810–20. http://dx.doi.org/10.1109/4.133172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kalivas, G. A. y R. G. Harrison. "Characterization of the frequency stability of frequency-hopping sources". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, n.º 5 (septiembre de 1991): 429–35. http://dx.doi.org/10.1109/58.84287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kotby, M. N., I. R. Titze, M. M. Saleh y D. A. Berry. "Fundamental Frequency Stability in Functional Dysphonia". Acta Oto-Laryngologica 113, n.º 3 (enero de 1993): 439–44. http://dx.doi.org/10.3109/00016489309135841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini y Pierre Lemonde. "Frequency stability of optical lattice clocks". New Journal of Physics 13, n.º 5 (6 de mayo de 2011): 059501. http://dx.doi.org/10.1088/1367-2630/13/5/059501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Brida, G. "High resolution frequency stability measurement system". Review of Scientific Instruments 73, n.º 5 (mayo de 2002): 2171–74. http://dx.doi.org/10.1063/1.1464654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Rebeiz, G. M. y L. D. DiDomenico. "Frequency stability in adaptive retrodirective arrays". IEEE Transactions on Aerospace and Electronic Systems 36, n.º 4 (2000): 1219–31. http://dx.doi.org/10.1109/7.892670.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Filicori, F. y G. Vannini. "Frequency stability in resonator-stabilized oscillators". IEEE Transactions on Circuits and Systems 37, n.º 11 (1990): 1440–44. http://dx.doi.org/10.1109/31.62420.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Walls, F. L. y D. W. Allan. "Correction to "Measurements of frequency stability"". Proceedings of the IEEE 74, n.º 8 (1986): 1166. http://dx.doi.org/10.1109/proc.1986.13603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Repasky, K. S., J. G. Wessel y J. L. Carlsten. "Frequency stability of high-finesse interferometers". Applied Optics 35, n.º 4 (1 de febrero de 1996): 609. http://dx.doi.org/10.1364/ao.35.000609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Wong, H. Vernon, W. Horton, J. W. Van Dam y C. Crabtree. "Low frequency stability of geotail plasma". Physics of Plasmas 8, n.º 5 (mayo de 2001): 2415–24. http://dx.doi.org/10.1063/1.1357828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Savilov, A. V. y G. S. Nusinovich. "Stability of frequency-multiplying harmonic gyroklystrons". Physics of Plasmas 15, n.º 1 (enero de 2008): 013112. http://dx.doi.org/10.1063/1.2832681.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini y Pierre Lemonde. "Frequency stability of optical lattice clocks". New Journal of Physics 12, n.º 6 (28 de junio de 2010): 065026. http://dx.doi.org/10.1088/1367-2630/12/6/065026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Urban, Rudez, Sodin Denis y Mihalic Rafael. "Estimating frequency stability margin for flexible under-frequency relay operation". Electric Power Systems Research 194 (mayo de 2021): 107116. http://dx.doi.org/10.1016/j.epsr.2021.107116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Marinelli, Mattia, Kristian Sevdari, Lisa Calearo, Andreas Thingvad y Charalampos Ziras. "Frequency stability with converter-connected resources delivering fast frequency control". Electric Power Systems Research 200 (noviembre de 2021): 107473. http://dx.doi.org/10.1016/j.epsr.2021.107473.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Cao, Liyu, Kazutaka Segawa, Akira Nabae y Kazuo Ohnishi. "Mid-Frequency Oscillation and High Frequency Stability in Stepping Motors". IEEJ Transactions on Industry Applications 117, n.º 9 (1997): 1146–53. http://dx.doi.org/10.1541/ieejias.117.1146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ferreiro, Teresa I., Jinghua Sun y Derryck T. Reid. "Frequency stability of a femtosecond optical parametric oscillator frequency comb". Optics Express 19, n.º 24 (11 de noviembre de 2011): 24159. http://dx.doi.org/10.1364/oe.19.024159.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Candelier, V., V. Giordano, A. Hamel, G. Th�obald, P. C�rez y C. Audoin. "Frequency stability of an optically pumped cesium beam frequency standard". Applied Physics B Photophysics and Laser Chemistry 49, n.º 4 (octubre de 1989): 365–70. http://dx.doi.org/10.1007/bf00324187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Cappelli, Francesco, Giulio Campo, Iacopo Galli, Giovanni Giusfredi, Saverio Bartalini, Davide Mazzotti, Pablo Cancio et al. "Frequency stability characterization of a quantum cascade laser frequency comb". Laser & Photonics Reviews 10, n.º 4 (2 de junio de 2016): 623–30. http://dx.doi.org/10.1002/lpor.201600003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

An, Byeong-Hyeon, Jae-Deok Park, Jun-Soo Che, Tae-Hun Kim y Tae-Sik Park. "Research on Improving Grid Frequency Stability Using Variable Frequency Transformer". Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 38, n.º 1 (29 de febrero de 2024): 40–48. http://dx.doi.org/10.5207/jieie.2024.38.1.40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Yoo, Jae Ik, Yong Cheol Kang, Eduard Muljadi, Kyu-Ho Kim y Jung-Wook Park. "Frequency Stability Support of a DFIG to Improve the Settling Frequency". IEEE Access 8 (2020): 22473–82. http://dx.doi.org/10.1109/access.2020.2969051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Xie, Yuzheng, Changgang Li, Hengxu Zhang, Huadong Sun y Vladimir Terzija. "Long-Term Frequency Stability Assessment Based on Extended Frequency Response Model". IEEE Access 8 (2020): 122444–55. http://dx.doi.org/10.1109/access.2020.3006239.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Browning, J. J., N. Hershkowitz, T. Intrator, R. Majeski y S. Meassick. "Radio‐frequency wave interchange stability experiments below the ion cyclotron frequency". Physics of Fluids B: Plasma Physics 1, n.º 8 (agosto de 1989): 1692–701. http://dx.doi.org/10.1063/1.858948.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Terra, Osama. "Characterization of the Frequency Stability of a Multibranch Optical Frequency Comb". IEEE Transactions on Instrumentation and Measurement 69, n.º 10 (octubre de 2020): 7773–80. http://dx.doi.org/10.1109/tim.2020.2986422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yang, Hong-Yu, Shu-Xi Gong, Peng-Fei Zhang, Feng-Tao Zha y Jin Ling. "A novel miniaturized frequency selective surface with excellent center frequency stability". Microwave and Optical Technology Letters 51, n.º 10 (23 de julio de 2009): 2513–16. http://dx.doi.org/10.1002/mop.24604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Khristenko, A. "A SIMPLE METHOD FOR IMPROVING OUT-OF-BAND HIGH-FREQUENCY STABILITY OF RADIO FREQUENCY AMPLIFIERS". RADIO PHYSICS AND RADIO ASTRONOMY 28, n.º 4 (2023): 318–28. http://dx.doi.org/10.15407/rpra28.04.318.

Texto completo
Resumen
Subject and Purpose. Methods for determining and ensuring the stability of radio frequency (RF) amplifiers have been progressing quite actively over the past decades. However, most of them are not convenient for practical use. Combining analytical and graphical techniques widely accepted at the moment requires a highly skillful user and licensed software. Also, a bad point is the lack of clear algorithms for increasing the out-of-band high-frequency stability of amplifiers, sending us to the procedure of successive approx- imations when an optimal solution for an individual scheme is sought. The present work seeks for a simple method that effectively increases the out-of-band high-frequency stability of RF amplifiers and improves the reliability of signal amplification systems, espe- cially those complex structures that incorporate low-frequency radio telescopes. Methods and Methodology. The parameters of the RF amplifiers and passive circuits are obtained by computer modeling upon the S-parameters given by the manufacturer. The amplifier stability is determined by the K-factor for stability. Results. A simple universal method has been developed to improve the out-of-band high-frequency stability of RF amplifiers. In this method, a stabilization RstabLstab circuit is connected to the amplifier in series with the load. An original procedure has been designed to calculate the stabilization circuit. Also, a metric has been proposed that evaluates the practical margins of the out-of-band high-frequency stability of RF amplifiers and makes it possible to compare them one to another. Finally, the proposed method offers freedom from the licensed software. Conclusions. The proposed method significantly increases the high-frequency stability of RF amplifiers beyond the operating fre- quency range and simplifies the technological requirements for the design. The employment of RF amplifiers is more available almost without compromising their performance in the operating frequency range. The method is simple and easy to apply.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Pérez-Illanes, Felipe, Eduardo Álvarez-Miranda, Claudia Rahmann y Camilo Campos-Valdés. "Robust Unit Commitment Including Frequency Stability Constraints". Energies 9, n.º 11 (16 de noviembre de 2016): 957. http://dx.doi.org/10.3390/en9110957.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Zhang Yin, 张胤 y 王青 Wang Qing. "Research of Automatic Frequency Stability Diode Laser". Chinese Journal of Lasers 41, n.º 6 (2014): 0602001. http://dx.doi.org/10.3788/cjl201441.0602001b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Lu, Lan, Yongxing Che, Shouzhu Tang, Zhihao Xu y Hongchao Wu. "A Large Angle Stability Frequency Selective Surface". Procedia Computer Science 187 (2021): 538–41. http://dx.doi.org/10.1016/j.procs.2021.04.096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Hojo, Hitoshi. "Low-Frequency Stability of Mirror Confined Plasmas." Kakuyūgō kenkyū 65, n.º 6 (1991): 639–57. http://dx.doi.org/10.1585/jspf1958.65.639.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Tseng, Yu-Chuan, Chin-Yun Pan, Pao-Hsin Liu, Yi-Hsin Yang, Hong-Po Chang y Chun-Ming Chen. "Resonance frequency analysis of miniscrew implant stability". Journal of Oral Science 60, n.º 1 (2018): 64–69. http://dx.doi.org/10.2334/josnusd.16-0613.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hoang Suoc. "About the stability of frequency-independent networks". IEEE Transactions on Circuits and Systems 32, n.º 9 (septiembre de 1985): 970–73. http://dx.doi.org/10.1109/tcs.1985.1085811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lu, Yong y Benjamin Texier. "A Stability Criterion for High-Frequency Oscillations". Mémoires de la Société mathématique de France 1 (2015): 1–138. http://dx.doi.org/10.24033/msmf.450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Gelfer, Marylou Pausewang. "The stability of total phonational frequency range". Journal of the Acoustical Society of America 79, S1 (mayo de 1986): S83. http://dx.doi.org/10.1121/1.2023419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Schredl, Michael y Stephany Fulda. "Reliability and stability of dream recall frequency." Dreaming 15, n.º 4 (diciembre de 2005): 240–44. http://dx.doi.org/10.1037/1053-0797.15.4.240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kamenetskiy, V. A. "Frequency-domain stability conditions for hybrid systems". Automation and Remote Control 78, n.º 12 (diciembre de 2017): 2101–19. http://dx.doi.org/10.1134/s0005117917120013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sheng, K., S. J. Finney y B. W. Williams. "Thermal stability of IGBT high-frequency operation". IEEE Transactions on Industrial Electronics 47, n.º 1 (2000): 9–16. http://dx.doi.org/10.1109/41.824018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Sargsyan, A., A. V. Papoyan, D. Sarkisyan y A. Weis. "Efficient technique for measuring laser frequency stability". European Physical Journal Applied Physics 48, n.º 2 (22 de septiembre de 2009): 20701. http://dx.doi.org/10.1051/epjap/2009147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wilbanks, T., M. Devlin, A. E. Lange, S. Sato, J. W. Beeman y E. E. Haller. "Improved low frequency stability of bolometric detectors". IEEE Transactions on Nuclear Science 37, n.º 2 (abril de 1990): 566–72. http://dx.doi.org/10.1109/23.106678.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía