Siga este enlace para ver otros tipos de publicaciones sobre el tema: Fractional spin.

Artículos de revistas sobre el tema "Fractional spin"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fractional spin".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Samuel, Joseph. "Fractional spin from gravity". Physical Review Letters 71, n.º 2 (12 de julio de 1993): 215–18. http://dx.doi.org/10.1103/physrevlett.71.215.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Genest, Vincent X., Luc Vinet y Alexei Zhedanov. "Exact fractional revival in spin chains". Modern Physics Letters B 30, n.º 26 (30 de septiembre de 2016): 1650315. http://dx.doi.org/10.1142/s0217984916503152.

Texto completo
Resumen
The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Liang, J. Q. y X. X. Ding. "New model of fractional spin". Physical Review Letters 63, n.º 8 (21 de agosto de 1989): 831–33. http://dx.doi.org/10.1103/physrevlett.63.831.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nobre, F. A. S. y C. A. S. Almeida. "Pauli's term and fractional spin". Physics Letters B 455, n.º 1-4 (mayo de 1999): 213–16. http://dx.doi.org/10.1016/s0370-2693(99)00475-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Plyushchay, M. S. "Fractional spin. Majorana-Dirac field". Physics Letters B 273, n.º 3 (diciembre de 1991): 250–54. http://dx.doi.org/10.1016/0370-2693(91)91679-p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Roy, Ashim Kumar. "Topological Invariance of Fractional Spin of the Abelian CSH Vortex". International Journal of Modern Physics A 12, n.º 13 (20 de mayo de 1997): 2343–59. http://dx.doi.org/10.1142/s0217751x97001365.

Texto completo
Resumen
The Abelian Chern–Simons–Higgs model in 2 + 1 dimensions exhibit vortex solutions with fractional spin. Although it is known that the normal, underformed charged vortex has a fractional spin related to its topological charge, it is not clear whether the value of this fractional spin is stable under changes in gauge-fixing conditions and regular deformations of the vortex field configurations. Recently, some authors have reported about the gauge as well as shape dependence of the fractional spin for the CSH vortex, which is contrary to our usual belief. However, their analysis is inconsistent and calls for a careful scrutiny. An explicit analysis is presented in this paper to show that the fractional spin for the Abelian CSH charged vortex may indeed be taken to be a gauge (small) and shape independent and hence, a topologically invariant quantity. The subtle points missed out by the other authors leading to inconsistency and the contradictory result are discussed in all essential details to resolve the issue.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

ROY, ASHIM KUMAR. "GAUGE AND SHAPE INDEPENDENCE OF FRACTIONAL SPIN OF DEFORMED SOLITONS IN THE (2+1)-DIMENSIONAL O(3) σ MODEL". International Journal of Modern Physics A 11, n.º 04 (10 de febrero de 1996): 759–75. http://dx.doi.org/10.1142/s0217751x96000353.

Texto completo
Resumen
The O(3) nonlinear σ model with the Hopf term and with a Chern–Simons gauge coupling in 2+1 dimensions is considered for an understanding of the soliton shape and gauge dependence of the fractional spin and statistics exhibited by the particle-like solutions. Some explicit forms of the shape-defining (for the deformed solitons of these models) functions and the adiabatic time-dependent function are used to assess the fractional spin. In two different gauges, a proper and explicit analysis shows that the fractional spin is a truly gauge- as well as shape-independent entity. This demonstrates that the fractional spin of solitons in the O(3) σ model is a topologically invariant quantity — a fact which has been put in doubt by some authors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

FORTE, STEFANO. "RELATIVISTIC PARTICLES WITH FRACTIONAL SPIN AND STATISTICS". International Journal of Modern Physics A 07, n.º 05 (20 de febrero de 1992): 1025–57. http://dx.doi.org/10.1142/s0217751x92000466.

Texto completo
Resumen
We develop the relativistic quantum mechanics of particles with fractional spin and statistics in 2 + 1 dimensions in the path-integral approach. We endow the elementary excitations of the theory with fractional spin through the coupling of the particle number current with a topological term. We work out the dynamics of the spin degrees of freedom, and display the relation between the spin action and the knot invariants of the paths contributing to the path integral. We show that the explicit spin-changing interaction can be traded for multivaluedness of the wave function, and we relate this to the representation theory of the Lorentz and Poincaré groups in 2 + 1 dimensions. We discuss the multiparticle dynamics and derive the spin–statistics theorem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Su, Neil Qiang, Chen Li y Weitao Yang. "Describing strong correlation with fractional-spin correction in density functional theory". Proceedings of the National Academy of Sciences 115, n.º 39 (10 de septiembre de 2018): 9678–83. http://dx.doi.org/10.1073/pnas.1807095115.

Texto completo
Resumen
An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

LIU, YONG-KAI y SHI-JIE YANG. "FRACTIONAL WINDINGS OF THE SPINOR CONDENSATES ON A RING". International Journal of Modern Physics B 27, n.º 16 (7 de junio de 2013): 1350070. http://dx.doi.org/10.1142/s0217979213500707.

Texto completo
Resumen
We study the uniform solutions to the one-dimensional (1D) spinor Bose–Einstein condensates on a ring. These states explicitly display the associated motion of the super-current and the spin rotation, which give rise to fractional winding numbers according to the various compositions of the hyperfine states. It simultaneously yields a fractional factor to the global phase due to the spin-gauge symmetry. All fractional windings can be denoted as nk/(m+n), with nk<m+n<2F, for arbitrary spin-F Bose–Einstein condensation (BEC). Our method can be applied to explore the fractional vortices by identifying the ring as the boundary of two-dimensional (2D) spinor condensates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Výborný, K. "Spin in fractional quantum Hall systems". Annalen der Physik 519, n.º 2 (25 de enero de 2007): 87–165. http://dx.doi.org/10.1002/andp.20075190201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hagen, C. R. "Fractional spin and the Pauli term". Physics Letters B 470, n.º 1-4 (diciembre de 1999): 119–20. http://dx.doi.org/10.1016/s0370-2693(99)01330-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Genest, Vincent X., Luc Vinet y Alexei Zhedanov. "Quantum spin chains with fractional revival". Annals of Physics 371 (agosto de 2016): 348–67. http://dx.doi.org/10.1016/j.aop.2016.05.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Výborný, K. "Spin in fractional quantum Hall systems". Annalen der Physik 16, n.º 2 (16 de febrero de 2007): 87–165. http://dx.doi.org/10.1002/andp.200610228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kay, Alastair. "Tailoring spin chain dynamics for fractional revivals". Quantum 1 (10 de agosto de 2017): 24. http://dx.doi.org/10.22331/q-2017-08-10-24.

Texto completo
Resumen
The production of quantum states required for use in quantum protocols & technologies is studied by developing the tools to re-engineer a perfect state transfer spin chain so that a separable input excitation is output over multiple sites. We concentrate in particular on cases where the excitation is superposed over a small subset of the qubits on the spin chain, known as fractional revivals, demonstrating that spin chains are capable of producing a far greater range of fractional revivals than previously known, at high speed. We also provide a numerical technique for generating chains that produce arbitrary single-excitation states, such as the W state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

HANSSON, T. H. y A. KARLHEDE. "DUALITY FOR ANYONS". Modern Physics Letters B 03, n.º 11 (20 de julio de 1989): 887. http://dx.doi.org/10.1142/s0217984989001382.

Texto completo
Resumen
We study the Nielsen-Olesen vortices in the three dimensional noncompact Abelian Higgs model with a Chern-Simons term. The vortices are fractionally charged anyons (i.e., particles with fractional spin and statistics). In a certain limit we can express the theory in terms of these topological excitations by performing a duality transformation on the lattice. The result is a topologically conserved current describing the vortices, minimally coupled to a dynamical gauge field with a Chern-Simons term. Spin, statistics and size of the excitations are all preserved under this transformation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

HANSSON, T. H. y A. KARLHEDE. "DUALITY FOR ANYONS". Modern Physics Letters A 04, n.º 20 (10 de octubre de 1989): 1937–43. http://dx.doi.org/10.1142/s0217732389002197.

Texto completo
Resumen
We study the Nielsen-Olesen vortices in the three dimensional noncompact Abelian Higgs model with a Chern-Simons term. The vortices are fractionally charged anyons (i.e., particles with fractional spin and statistics). In a certain limit we can express the theory in terms of these topological excitations by performing a duality transformation on the lattice. The result is a topologically conserved current describing the vortices, minimally coupled to a dynamical gauge field with a Chern-Simons term. Spin, statistics and size of the excitations are all preserved under this transformation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Stevenson, Catherine J. y Jordan Kyriakidis. "Fractional orbital occupation of spin and charge in artificial atoms". Canadian Journal of Physics 89, n.º 2 (febrero de 2011): 213–17. http://dx.doi.org/10.1139/p10-108.

Texto completo
Resumen
We present results on spin and charge correlations in two-dimensional quantum dots as a function of increasing Coulomb strength (dielectric constant). We look specifically at the orbital occupation of both spin and charge. We find that charge and spin evolve separately, especially at low Coulomb strength. For the charge, we find that a hole develops in the core orbitals at strong Coulomb repulsion, invalidating the common segregation of confined electrons into an inert core and active valence electrons. For excitations, we find a total spin-projection Sz = –1/2 breaks apart into separate occupations of net positive and negative spin. This dissociation is caused by spin correlations alone. Quantum fluctuations arising from long-range Coulomb repulsion destroy the spin dissociation and eventually results in all orbitals carrying a negative spin.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lan, Yuanpei y Shaolong Wan. "Fractional charge and statistics in the fractional quantum spin Hall effect". Journal of Physics: Condensed Matter 24, n.º 16 (30 de marzo de 2012): 165503. http://dx.doi.org/10.1088/0953-8984/24/16/165503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

FORTE, STEFANO. "BERRY'S PHASE, FRACTIONAL STATISTICS AND THE LAUGHLIN WAVE FUNCTION". Modern Physics Letters A 06, n.º 34 (10 de noviembre de 1991): 3153–62. http://dx.doi.org/10.1142/s021773239100364x.

Texto completo
Resumen
We determine the path-integral for particles with fractional spin and statistics in the adiabatic limit, and we discuss the identification of the spin-changing term with a Berry phase. We show that the standard proof that the Laughlin wave function describes excitations with fractional statistics holds only on the basis of a tacit assumption of questionable validity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

VÝBORNÝ, KAREL y DANIELA PFANNKUCHE. "SPIN STRUCTURES IN INHOMOGENEOUS FRACTIONAL QUANTUM HALL SYSTEMS". International Journal of Modern Physics B 18, n.º 27n29 (30 de noviembre de 2004): 3871–74. http://dx.doi.org/10.1142/s0217979204027621.

Texto completo
Resumen
Transitions between spin polarized and spin singlet incompressible ground state of quantum Hall systems at filling factor 2/3 are studied by means of exact diagonalization with eight electrons. We observe a stable exactly half–polarized state becoming the absolute ground state around the transition point. This might be a candidate for the anomaly observed during the transition in optical experiments. The state reacts strongly to magnetic inhomogeneities but it prefers stripe–like spin structures to formation of domains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Sasaki, Shosuke. "Spin-Peierls effect in spin-polarization of fractional quantum Hall states". Surface Science 566-568 (septiembre de 2004): 1040–46. http://dx.doi.org/10.1016/j.susc.2004.06.101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Aharonov, Y., C. K. Au y L. Vaidman. "Comment on ‘‘New model of fractional spin’’". Physical Review Letters 66, n.º 12 (25 de marzo de 1991): 1638–39. http://dx.doi.org/10.1103/physrevlett.66.1638.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Xie, X. C., Yin Guo y F. C. Zhang. "Fractional quantum Hall effect with spin reversal". Physical Review B 40, n.º 5 (15 de agosto de 1989): 3487–90. http://dx.doi.org/10.1103/physrevb.40.3487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Clark, Robert y Peter Maksym. "Fractional quantum Hall effect in a spin". Physics World 2, n.º 9 (septiembre de 1989): 39–46. http://dx.doi.org/10.1088/2058-7058/2/9/23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Fukui, Takahiro, Norio Kawakami y Sung-Kil Yang. "Higher-Spin Generalization of Fractional Exclusion Statistics". Journal of the Physical Society of Japan 65, n.º 6 (15 de junio de 1996): 1617–21. http://dx.doi.org/10.1143/jpsj.65.1617.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sasaki, Shosuke. "Spin polarization in fractional quantum Hall effect". Surface Science 532-535 (junio de 2003): 567–75. http://dx.doi.org/10.1016/s0039-6028(03)00091-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Einarsson, T., S. L. Sondhi, S. M. Girvin y D. P. Arovas. "Fractional spin for quantum Hall effect quasiparticles". Nuclear Physics B 441, n.º 3 (mayo de 1995): 515–29. http://dx.doi.org/10.1016/0550-3213(95)00025-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Mansour, M. y E. H. Zakkari. "FRACTIONAL SPIN THROUGH QUANTUM (SUPER)VIRASORO ALGEBRAS". Advances in Applied Clifford Algebras 14, n.º 1 (marzo de 2004): 69–80. http://dx.doi.org/10.1007/s00006-004-0007-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Mussard, Bastien y Julien Toulouse. "Fractional-charge and fractional-spin errors in range-separated density-functional theory". Molecular Physics 115, n.º 1-2 (2 de agosto de 2016): 161–73. http://dx.doi.org/10.1080/00268976.2016.1213910.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ng, K. K. "Bilayered Spin-S Heisenberg Model in Fractional Dimensions". International Journal of Modern Physics B 12, n.º 18 (20 de julio de 1998): 1809–12. http://dx.doi.org/10.1142/s0217979298001034.

Texto completo
Resumen
The ground state and the phase transitions of the bilayered spin-S anti-ferromagnetic Heisenberg model were studied by Ng et al.1 by using the Schwinger boson mean field theory. In this paper, an analytic continuation of the self-consistent equations is carried out in order to study the extension of the model to fractional dimensions from 1 to 2. Decreasing the dimensionality from 2 has an effect similar to that of decreasing the spin S. The corresponding phase diagram and phase transition will also be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Matuszak, Zenon. "Fractional Bloch's Equations Approach to Magnetic Relaxation". Current Topics in Biophysics 37, n.º 1 (2 de febrero de 2015): 9–22. http://dx.doi.org/10.2478/ctb-2014-0069.

Texto completo
Resumen
It is the goal of this paper to present general strategy for using fractional operators to model the magnetic relaxation in complex environments revealing time and spacial disorder. Such systems have anomalous temporal and spacial response (non-local interactions and long memory) compared to systems without disorder. The systems having no memory can be modeled by linear differential equations with constant coefficients (exponential relaxation); the differential equations governing the systems with memory are known as Fractional Order Differential Equations (FODE). The relaxation of the spin system is best described phenomenologically by so-called Bloch's equations, which detail the rate of change of the magnetization M of the spin system. The Ordinary Order Bloch's Equations (OOBE) are a set of macroscopic differential equations of the first order describing the magnetization behavior under influence of static, varying magnetic fields and relaxation. It is assumed that spins relax along the z axis and in the x-y plane at different rates, designated as R1 and R2 (R1=1/T1,R2=1/T2) respectively, but following first order kinetics. To consider heterogeneity, complex structure, and memory effects in the relaxation process the Ordinary Order Bloch's Equations were generalized to Fractional Order Bloch's Equations (FOBE) through extension of the time derivative to fractional (non-integer) order. To investigate systematically the influence of “fractionality” (power order of derivative) on the dynamics of the spin system a general approach was proposed. The OOBE and FOBE were successively solved using analytical (Laplace transform), semi-analytical (ADM - Adomian Decomposition Method) and numerical methods (Grunwald- Letnikov method for FOBE). Solutions of both OOBE and FOBE systems of equations were obtained for various sets of experimental parameters used in spin !! NMR and EPR spectroscopies. The physical meaning of the fractional relaxation in magnetic resonance is shortly discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Califano, Marco, Tapash Chakraborty y Pekka Pietiläinen. "Spin precession in a fractional quantum Hall state with spin-orbit coupling". Applied Physics Letters 87, n.º 11 (12 de septiembre de 2005): 112508. http://dx.doi.org/10.1063/1.2045546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Mohammed, Wael W., Farah M. Al-Askar, Clemente Cesarano, Thongchai Botmart y M. El-Morshedy. "Wiener Process Effects on the Solutions of the Fractional (2 + 1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation". Mathematics 10, n.º 12 (13 de junio de 2022): 2043. http://dx.doi.org/10.3390/math10122043.

Texto completo
Resumen
The stochastic fractional (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation (SFHFSCE), which is driven in the Stratonovich sense by a multiplicative Wiener process, is considered here. The analytical solutions of the SFHFSCE are attained by utilizing the Jacobi elliptic function method. Various kinds of analytical fractional stochastic solutions, for instance, the elliptic functions, are obtained. Physicists can utilize these solutions to understand a variety of important physical phenomena because magnetic solitons have been categorized as one of the interesting groups of non-linear excitations representing spin dynamics in semi-classical continuum Heisenberg systems. To study the impact of the Wiener process on these solutions, the 3D and 2D surfaces of some achieved exact fractional stochastic solutions are plotted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zhang Ying y Li Zi-Ping. "Fractional spin in non-Abel Chern-Simons theories". Acta Physica Sinica 54, n.º 6 (2005): 2611. http://dx.doi.org/10.7498/aps.54.2611.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Peng, Degao, Xiangqian Hu, Deepa Devarajan, Daniel H. Ess, Erin R. Johnson y Weitao Yang. "Variational fractional-spin density-functional theory for diradicals". Journal of Chemical Physics 137, n.º 11 (21 de septiembre de 2012): 114112. http://dx.doi.org/10.1063/1.4749242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Helbig, N., G. Theodorakopoulos y N. N. Lathiotakis. "Fractional spin in reduced density-matrix functional theory". Journal of Chemical Physics 135, n.º 5 (7 de agosto de 2011): 054109. http://dx.doi.org/10.1063/1.3615955.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Mansour, M., M. Daoud y Y. Hassouni. "K-Fractional spin through Q-deformed (super)-algebras". Reports on Mathematical Physics 44, n.º 3 (diciembre de 1999): 435–48. http://dx.doi.org/10.1016/s0034-4877(00)87249-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Výborný, Karel y Daniela Pfannkuche. "Spin structures in inhomogeneous fractional quantum Hall systems". Physica E: Low-dimensional Systems and Nanostructures 22, n.º 1-3 (abril de 2004): 142–47. http://dx.doi.org/10.1016/j.physe.2003.11.237.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bergholtz, Emil J., Masaaki Nakamura y Juha Suorsa. "Effective spin chains for fractional quantum Hall states". Physica E: Low-dimensional Systems and Nanostructures 43, n.º 3 (enero de 2011): 755–60. http://dx.doi.org/10.1016/j.physe.2010.07.044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Nakajima, T. y H. Aoki. "Spin waves in double fractional quantum Hall systems". Physica B: Condensed Matter 201 (julio de 1994): 327–30. http://dx.doi.org/10.1016/0921-4526(94)91108-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Niemelä, K., P. Pietiläinen y T. Chakraborty. "Spin transitions in the fractional quantum Hall systems". Physica B: Condensed Matter 284-288 (julio de 2000): 1716–17. http://dx.doi.org/10.1016/s0921-4526(99)02999-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Goswami, Gautam y Pratul Bandyopadhyay. "Fractional statistics, Zp spin system, and XY model". Journal of Mathematical Physics 33, n.º 3 (marzo de 1992): 1090–96. http://dx.doi.org/10.1063/1.529771.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cortés, J. L. y M. S. Plyushchay. "Linear differential equations for a fractional spin field". Journal of Mathematical Physics 35, n.º 11 (noviembre de 1994): 6049–57. http://dx.doi.org/10.1063/1.530727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Machida, Tomoki, Susumu Ishizuka y Koji Muraki. "Spin polarization in fractional quantum Hall edge channels". Physica E: Low-dimensional Systems and Nanostructures 12, n.º 1-4 (enero de 2002): 76–79. http://dx.doi.org/10.1016/s1386-9477(01)00246-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Lemay, Jean-Michel, Luc Vinet y Alexei Zhedanov. "An analytic spin chain model with fractional revival". Journal of Physics A: Mathematical and Theoretical 49, n.º 33 (8 de julio de 2016): 335302. http://dx.doi.org/10.1088/1751-8113/49/33/335302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Lee, Taejin, Chekuri N. Rao y K. S. Viswanathan. "Fractional spin in the gauged O(3)σmodel". Physical Review D 39, n.º 8 (15 de abril de 1989): 2350–54. http://dx.doi.org/10.1103/physrevd.39.2350.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chung, Suk Bum, Daniel F. Agterberg y Eun-A. Kim. "Fractional vortex lattice structures in spin-triplet superconductors". New Journal of Physics 11, n.º 8 (13 de agosto de 2009): 085004. http://dx.doi.org/10.1088/1367-2630/11/8/085004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Perdew, John P. "Artificial intelligence “sees” split electrons". Science 374, n.º 6573 (10 de diciembre de 2021): 1322–23. http://dx.doi.org/10.1126/science.abm2445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

FURTADO, J. S. N. y F. A. S. NOBRE. "THE PAULI TERM AS A GENERATOR OF FRACTIONAL SPIN". Modern Physics Letters A 26, n.º 19 (21 de junio de 2011): 1427–32. http://dx.doi.org/10.1142/s0217732311035912.

Texto completo
Resumen
In this work, we show that contrary to what is commonly accepted by the community, the Chern–Simons term is not essential to fractional statistics. A Lagrangian whose dynamics is governed only by the Pauli term coupled to matter fields leads to the fractional spin. Despite its simplicity, development of this Lagrangian gives rise to essentially the same terms that appear in Chern–Simons models, such as those reported by Nobre and Almeida.13,8,9
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía