Literatura académica sobre el tema "Formation of the solar system"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Formation of the solar system".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Formation of the solar system"
Smith, Keith T. "Timing Solar System formation". Science 370, n.º 6518 (12 de noviembre de 2020): 805.13–807. http://dx.doi.org/10.1126/science.370.6518.805-m.
Texto completoMorfill, G. E. "Models of solar system formation". Chemical Geology 70, n.º 1-2 (agosto de 1988): 32. http://dx.doi.org/10.1016/0009-2541(88)90268-9.
Texto completoRawal, J. J. "Formation of the solar system". Astrophysics and Space Science 119, n.º 1 (enero de 1986): 159–66. http://dx.doi.org/10.1007/bf00648837.
Texto completoPfalzner, S., M. B. Davies, M. Gounelle, A. Johansen, C. Münker, P. Lacerda, S. Portegies Zwart, L. Testi, M. Trieloff y D. Veras. "The formation of the solar system". Physica Scripta 90, n.º 6 (21 de abril de 2015): 068001. http://dx.doi.org/10.1088/0031-8949/90/6/068001.
Texto completoRussell, Sara S. "The Formation of the Solar System". Journal of the Geological Society 164, n.º 3 (mayo de 2007): 481–92. http://dx.doi.org/10.1144/0016-76492006-054.
Texto completoChambers, John. "Making the Solar System". Astrophysical Journal 944, n.º 2 (1 de febrero de 2023): 127. http://dx.doi.org/10.3847/1538-4357/aca96f.
Texto completoIda, Shigeru y Eiichiro Kokubo. "Terrestrial Planet Formation: The Solar System and Other Systems". Symposium - International Astronomical Union 202 (2004): 159–66. http://dx.doi.org/10.1017/s0074180900217749.
Texto completoImaeda, Yusuke y Toshikazu Ebisuzaki. "Tandem planet formation for solar system-like planetary systems". Geoscience Frontiers 8, n.º 2 (marzo de 2017): 223–31. http://dx.doi.org/10.1016/j.gsf.2016.06.011.
Texto completoYu, Ziyuan, Jin Liu, Chao Pan, Lvqian Guo, Zhiwei Kang y Xin Ma. "Solar TDOA measurement and integrated navigation for formation flying". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 12 (febrero de 2019): 4635–45. http://dx.doi.org/10.1177/0954410019827148.
Texto completoSmith, Keith T. "Two-part formation of the Solar System". Science 371, n.º 6527 (21 de enero de 2021): 358.4–359. http://dx.doi.org/10.1126/science.371.6527.358-d.
Texto completoTesis sobre el tema "Formation of the solar system"
Crida, Aurélien. "Planetary migration in solar system formation". Nice, 2006. http://www.theses.fr/2006NICE4076.
Texto completoLa migration planétaire est un phénomène apparemment inévitable lors de la formation des planètes dans les disques protoplanétaires. Les interactions gravitationnelles entre les embryons de planète et le disque de gaz font décroître le moment cinétique de l'embryon, qui spirale vers l'étoile centrale. Le temps de migration étant plus court que la durée de vie du disque, aucune planète ne devrait survivre (chapitres 1 et 2). Dans cette thèse, nous essayons de trouver des mécanismes qui empêchent ou ralentissent la migration. Dans le chapitre 3, nous montrons qu'un saut dans le profil de densité du disque de gaz bloque la migration et agit comme un piège à planète. Ainsi bloqué, un coeur solide massif peut accrèter une atmosphère gazeuse et devenir une planète géante. La planète est alors assez massive pour repousser le gaz et ouvrir un sillon autour de son orbite. En analysant des simulations numériques, nous mettons en évidence le rôle des effets de pression dans ce processus dans le chapitre 4; un nouveau critère unifié d'ouverture du sillon en découle. Après la présentation dans le chapitre 5 d'un nouvel algorithme fiable et performant pour réaliser des simulations numériques, nous l'utilisons dans le chapitre 6 pour étudier la migration d'une planète géante et son impact sur l'évolution du disque. La formation d'une cavité s'avère moins facile que prévu, mais une possibilité d'arrêter la migration apparaît. Enfin, dans le chapitre 7, nous étudions le cas de Jupiter et Saturne, et trouvons dans quelles conditions les interactions entre les deux planètes en empêchent la migration
Cyr, Kimberly Ellen 1964. "The distribution of water in the solar nebula: Implications for solar system formation". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/288870.
Texto completoElliott, Garrett T. "Detecting the debris of solar system formation via stellar occultation". Connect to resource, 2008. http://hdl.handle.net/1811/32191.
Texto completoMehta, Anand Vivek 1966. "The role of vortices in the formation of the solar system". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50500.
Texto completoIncludes bibliographical references (p. 117-119).
An important part of explaining planet formation is understanding how small particles accumulate into larger bodies. Gas vortices are suggested as a mechanism to enhance the coagulation of dust particles in the solar nebula. An inviscid, barotropic, two-dimensional form of the vorticity equation is derived to study the gas flow. A pseudospectral numerical model uses this equation to calculate the evolution of the vorticity field. The calculations show that locally prograde elliptical vortices with the major axis parallel to the angular axis can persist for at least 103 years with less than 1% change in peak vorticity. The shape of the vortex depends on the strength, similar to analytical expressions for elliptical vortices in a linear shear. Stronger vortices are rounder while weaker vortices are elongated; With ratios of the peak vorticity to the background vorticity of 1.0 and 0.2, the aspect ratios are approximately 0.5 and 0.25. The vortex area is mostly constant, and the linear dimensions change as the shape changes. Two negative vortices within the same radial band tend to merge, forming a larger, stronger vortex in a few orbit periods. A random viscosity field tends to have a few strong vortices form, although not as efficiently as with merging vortices. Dust particles interact with the gas through the Stokes drag force, with the relaxation time specifying how quickly the particle velocity approaches the gas velocity. The particles tend to converge in high pressure vortices and drift out of low pressure systems. The convergence time is dependent on the vortex strength and the particle relaxation time. If the relaxation time is short compared to the period, the particles do not have an appreciable differential velocity compared to the gas, and the Stokes drag force is small. If the relaxation time is long, then the Stokes drag force is not large enough to have a significant effect. If, however, the relaxation time is of the same order as the period, so the dynamical and frictional timescales are similar, then the particles will have the shortest convergence times. This result can be seen analytically in the simple case of an axisymmetric pressure band and numerically in calculations involving the robust vortex. With a robust vortex, the convergence times are approximately 3-4 yr for relaxation times of 0.1-0.2 yr. For typical values of properties of the solar nebula, this relaxation time applies for particles with diameters of around 20 cm. Other particles, both smaller and larger, converge more slowly, but the different times result in more collisions, enhancing the coagulation of larger bodies.
by Anand Vivek Mehta.
Ph.D.
Lawler, Samantha. "The leftovers of planet formation : small body populations of our solar system and exoplanet systems". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44760.
Texto completoPatzelt, Madelein [Verfasser] y Klaus [Akademischer Betreuer] Mezger. "Chondrule formation in the early Solar System / Madelein Patzelt ; Betreuer: Klaus Mezger". Münster : Universitäts- und Landesbibliothek Münster, 2015. http://d-nb.info/1138279943/34.
Texto completoTheis, Karen Julia. "Iron isotope fractionation of planetary bodies during early solar system formation processes". Thesis, University of Manchester, 2008. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:163898.
Texto completoGorlova, Nadiya Igorivna. "Debris Disks in Open Stellar Clusters". Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195908.
Texto completoMiller, Kelly E. y Kelly E. Miller. "The R Chondrite Record of Volatile-Rich Environments in the Early Solar System". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621016.
Texto completoWilliams, Niel Hamilton. "Titanium isotope cosmochemistry". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/titanium-isotope-cosmochemistry(571ae148-1673-4b85-bc10-937284bb53fc).html.
Texto completoLibros sobre el tema "Formation of the solar system"
Ferronsky, V. I. y S. V. Ferronsky. Formation of the Solar System. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5908-4.
Texto completoRossi, Matteo De. Solar system: Structure, formation, and exploration. Hauppauge, N.Y: Nova Science Publisher's, 2011.
Buscar texto completoAnfilogov, Vsevolod N. y Yurij V. Khachay. Some Aspects of the Formation of the Solar System. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17831-8.
Texto completoMandt, Kathleen, Olivier Mousis, Dominique Bockelée-Morvan y Christopher Russell, eds. Comets as Tracers of Solar System Formation and Evolution. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1103-4.
Texto completoPessah, Martin y Oliver Gressel, eds. Formation, Evolution, and Dynamics of Young Solar Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60609-5.
Texto completoFormation of water and our solar system from a fission process with an. [Place of publication not identified]: Xlibris Corporation, 2011.
Buscar texto completoESLAB Symposium. (24th 1990 Friedrichshafen, Germany). Formation of stars and planets and the evolution of the solar system: Proceedings of the 24th ESLAB Symposium, 17 - 19 September 1990, Friedrichshafen, Germany. Editado por Battrick B. 1946-, Schwehm G, Stammes P y European Space Agency. Noordwijk, The Netherlands: ESA Publications, 1990.
Buscar texto completo1953-, Weaver Harold A., Danly L y Space Telescope Science Institute (U.S.), eds. The formation and evolution of planetary systems: Proceedings of the Formation and Evolution of Planetary Systems Meeting, Baltimore, 1988, May 9-11. Cambridge: Cambridge University Press, 1989.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Origins of interstellar and solar system carbonaceous materials: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Buscar texto completoV, Ferronskiĭ S., ed. Formation of the solar system: A new theory of the creation and decay of the celestial bodies. Dordrecht: Springer, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Formation of the solar system"
Crida, Aurélien. "Solar System Formation". En Reviews in Modern Astronomy, 215–27. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629190.ch12.
Texto completoRobert, François. "Solar System Formation (Chronology)". En Encyclopedia of Astrobiology, 1528–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1797.
Texto completoSouthwood, D. J. "Formation of Magnetotails". En Magnetotails in the Solar System, 197–215. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118842324.ch12.
Texto completoPetit, Jean-Marc y Alessandro Morbidelli. "Chronology of Solar System Formation". En Lectures in Astrobiology, 61–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10913406_3.
Texto completoRobert, François. "System Solar Formation, Chronology of". En Encyclopedia of Astrobiology, 2450–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1797.
Texto completoRawal, J. J. "Formation of the Solar System". En Third Asian-Pacific Regional Meeting of the International Astronomical Union, 159–66. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4630-9_37.
Texto completoRobert, François. "System Solar Formation, Chronology of". En Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1797-2.
Texto completoRobert, François. "System Solar Formation, Chronology of". En Encyclopedia of Astrobiology, 2985–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1797.
Texto completoBally, John, Alan Boss, Dimitri Papanastassiou, Scott Sandford y Anneila Sargent. "Star Formation and the Solar System". En Galactic and Extragalactic Star Formation, 311–27. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2973-9_19.
Texto completoPirronello, Valerio. "Molecule Formation in Cometary Environments". En Ices in the Solar System, 261–72. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5418-2_17.
Texto completoActas de conferencias sobre el tema "Formation of the solar system"
Palouš, Jan, Richard Wünsch, Vasile Mioc, Cristiana Dumitrache y Nedelia A. Popescu. "Star Formation and Evolution of Galaxies". En EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993679.
Texto completoKadik, A. A. "Formation of carbon species in terrestrial magmas". En Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48734.
Texto completoLunine, Jonathan I., Wei Dai y Fatima Ebrahim. "Solar system formation and the distribution of volatile species". En Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48735.
Texto completoBilenko, I. A., Vasile Mioc, Cristiana Dumitrache y Nedelia A. Popescu. "Conditions for the formation of CMEs associated with filament eruptions". En EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993659.
Texto completoLichtenberg, Tim, Joanna Drążkowska, Maria Schönbächler, Gregor Golabek y Thomas Hands. "Bifurcation of planetary building blocks during Solar System formation". En Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4476.
Texto completoLi, Ming, Huizhu Yang, Gedong Jiang, Wenjun Wang y Xuesong Mei. "Formation of nanostructures on the surface of CIGS films by picosecond laser with different beam patterns". En Photonics for Solar Energy Systems, editado por Ralf B. Wehrspohn y Alexander N. Sprafke. SPIE, 2018. http://dx.doi.org/10.1117/12.2306814.
Texto completoTakeichi, Noboru. "Feasibility Study of a Solar Power Satellite System Configured by Formation Flying". En 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-r.1.07.
Texto completoYoung, Edward y Michelle Jordan. "IRON ISOTOPE CONSTRAINTS ON PLANETESIMAL CORE FORMATION IN THE EARLY SOLAR SYSTEM". En GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284424.
Texto completoCassen, Patrick y Kenneth M. Chick. "The survival of presolar grains during the formation of the solar system". En ASTROPHYSICAL IMPLICATIONS OF THE LABORATORY STUDY OF PRESOLAR MATERIALS. ASCE, 1997. http://dx.doi.org/10.1063/1.53324.
Texto completoTamura, M., M. Takami, K. Enya, T. Ootsubo, M. Fukagawa, M. Honda, Y. K. Okamoto et al. "Key Sciences of SPICA Mission: Planetary Formation, Exoplanets, and our Solar System". En SPICA joint European/Japanese Workshop. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/spica/200902001.
Texto completoInformes sobre el tema "Formation of the solar system"
Brown, W. K. High explosive simulations of supernovae and the supernova shell fragmentation model of solar system formation. Office of Scientific and Technical Information (OSTI), septiembre de 1987. http://dx.doi.org/10.2172/6019760.
Texto completoBARKHATOV, NIKOLAY y SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, diciembre de 2021. http://dx.doi.org/10.12731/er0519.07122021.
Texto completoMoens, L. y D. Blake. Mechanism of Hydrogen Formation in Solar Paraboic Trough Receivers. Office of Scientific and Technical Information (OSTI), febrero de 2008. http://dx.doi.org/10.2172/924987.
Texto completoHamilton, C. Views of the solar system. Office of Scientific and Technical Information (OSTI), febrero de 1995. http://dx.doi.org/10.2172/10116814.
Texto completoSussman, Gerald J. y Jack Wisdom. Chaotic Evolution of the Solar System. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1992. http://dx.doi.org/10.21236/ada260055.
Texto completoWesle, Max y Robert Buchinger. INFO Sheet C03: One-World-Solar-System. IEA SHC Task 54, noviembre de 2017. http://dx.doi.org/10.18777/ieashc-task54-2017-0014.
Texto completoMills, A., A. Botterud, J. Wu, Z. Zhou, B.-M. Hodge y M. Heaney. Integrating Solar PV in Utility System Operations. Office of Scientific and Technical Information (OSTI), noviembre de 2013. http://dx.doi.org/10.2172/1107495.
Texto completoBaines, K. H., D. T. Gavel, A. M. Getz, S. G. Gibbartd, B. MacIntosh, C. E. Max, C. P. McKay, E. F. Young y I. de Pater. Solar system events at high spatial resolution. Office of Scientific and Technical Information (OSTI), febrero de 1999. http://dx.doi.org/10.2172/12548.
Texto completoMills, A., A. Botterud, J. Wu, Z. Zhou, B.-M. Hodge y M. Heany. Integrating Solar PV in Utility System Operations. Office of Scientific and Technical Information (OSTI), octubre de 2013. http://dx.doi.org/10.2172/1164898.
Texto completoSkordos, Panayotis A. Multistep Methods for Integrating the Solar System. Fort Belvoir, VA: Defense Technical Information Center, julio de 1988. http://dx.doi.org/10.21236/ada201692.
Texto completo