Literatura académica sobre el tema "Formation of C-N bonds"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Formation of C-N bonds".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Formation of C-N bonds"
Meng, Ge, Pengfei Li, Kai Chen y Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation". Synthesis 49, n.º 21 (26 de septiembre de 2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.
Texto completoZeng, Xiaoming y Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds". Synlett 32, n.º 13 (11 de mayo de 2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.
Texto completoHenry, Martyn, Mohamed Mostafa y Andrew Sutherland. "Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions". Synthesis 49, n.º 20 (28 de agosto de 2017): 4586–98. http://dx.doi.org/10.1055/s-0036-1588536.
Texto completoChang, Denghu, Dan Zhu, Peng Zou y Lei Shi. "Cleavage of C–N bonds in guanidine derivatives and its relevance to efficient C–N bonds formation". Tetrahedron 71, n.º 11 (marzo de 2015): 1684–93. http://dx.doi.org/10.1016/j.tet.2015.01.050.
Texto completoWang, Congyang y Ting Liu. "Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds". Synlett 32, n.º 13 (27 de marzo de 2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.
Texto completoRit, Raja K., Majji Shankar y Akhila K. Sahoo. "C–H imidation: a distinct perspective of C–N bond formation". Organic & Biomolecular Chemistry 15, n.º 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.
Texto completoZinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan y Catherine S. J. Cazin. "Palladate Precatalysts for the Formation of C–N and C–C Bonds". Organometallics 38, n.º 14 (2 de julio de 2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.
Texto completoWei, Wenting, Wenming Zhu, Yi Wu, Yiling Huang y Hongze Liang. "Progress in C—N Bonds Formation Using t-BuONO". Chinese Journal of Organic Chemistry 37, n.º 8 (2017): 1916. http://dx.doi.org/10.6023/cjoc201703039.
Texto completoZhao, Binlin, Torben Rogge, Lutz Ackermann y Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation". Chemical Society Reviews 50, n.º 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.
Texto completoSun, Qiu, Ling He, Jiaxin Cheng, Ze Yang, Yuansheng Li y Yulan Xi. "Synthesis of Isoxazolines and Isoxazoles via Metal-Free Desulfitative Cyclization". Synthesis 50, n.º 12 (14 de mayo de 2018): 2385–93. http://dx.doi.org/10.1055/s-0037-1609480.
Texto completoTesis sobre el tema "Formation of C-N bonds"
Bowen, John George. "C-H activation in the formation of C-N and C-O Bonds". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685335.
Texto completoPersson, Andreas K. Å. "Palladium(II)-Catalyzed Oxidative Cyclization Strategies : Selective Formation of New C-C and C-N Bonds". Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75435.
Texto completoAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.
Lishchynskyi, Anton. "Development of new methods for the asymmetric formation of C-N bonds". Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAF026.
Texto completoThe concept of metal-ligand bifunctionality was successfully applied for an enantioselective aza-Michael reaction by employing well-defined ruthenium amido complexes. The catalyst was optimised and the corresponding chiral indoline β-amino acid derivatives were obtained with high enantioselectivities. Next, a straightforward enantioselective bifunctional organocatalytic approach was also developed. Employing hydroquinidine as catalyst the corresponding cyclic products were obtained in excellent enantioselectivities and quantitative yields. These compounds can be selectively deprotected and applied to peptide synthesis. Finally, we have developed unprecedented diamination reactions of styrenes, butadienes and hexatrienes employing easily accessible hypervalent iodine(III) reagents under robust reaction conditions. The first examples of the metal-free 1,2-diamination of butadienes were demonstrated and this oxidation methodology was further extended to the highly attractive 1,4 installation of two nitrogen atoms within a single step
Mane, K. D. "Enantioselective synthesis of bioactive molecule and development of synthetic methodologies involving formation of C-C, C-N bonds". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2022. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/6140.
Texto completoHuang, Xiaohua 1973. "Palladium-catalyzed C-C, C-N and C-O bond formation". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29639.
Texto completoVita.
Includes bibliographical references.
New methods for Pd-catalyzed cross-coupling reactions of aryl halides or arenesulfonates are described. Key to the success of these transformations is the proper choice of ligand and reaction conditions. Palladium catalysts supported by bulky, monodentate phosphine ligands with a biaryl backbone or the bidentate ligand, Xantphos, effectively promote the formation of ca-aryl carbonyl compounds. Base-sensitive functional groups are better tolerated when a weak base, such as K3PO4, is used. One of the most difficult transformations in Pd catalysis, the intermolecular C-O bond formation between primary alcohols and electron-neutral or even electron-rich aryl halides, was effectively promoted by the use of a new generation of ligands, 3-methyl-2-di-t-butylphosphinobiaryl. The one-step synthesis of ligands from cheap starting materials, as well as the mild reaction conditions employed for the coupling reactions, enables the practical use of Pd catalysis to access aryl alkyl ethers for the first time. Continuing study of Pd-catalyzed C-N bond-forming processes using biaryl monophosphine ligands led to the discovery of a structural derivative of these ligands, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl. This ligand, in combination with a Pd source, produces a catalyst system with both a greater degree of activity and of stability than those that use our previous ligands. Substrates that were not amenable to Pd catalysis previously are reexamined using this new catalyst system, and excellent results are obtained.
by Xiaohua Huang.
Ph.D.
Correia, Camille. "Oxidative C-C bond formation via metal-catalyzed coupling of two C-H bonds". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114441.
Texto completoCette thèse décrit la formation de nouvelles liaisons C-C par activation oxydative directe de deux liaisons C-H grâce à l'utilisation de métaux de transition comme catalyseurs. La première partie présentera trois différentes réactions de Cross-Dehydrogenative-Coupling (CDC) oxydantes. Dans un premier temps, sera présentée dans le chapitre 2, la réaction d'alkylation de liens C-H benzylique par 1,3-dicarbonyles et cétones. Ce system a démontré son efficacité sur une large variété de substrats contenant des liaisons C-H enolysable. De plus il a été rendu possible, grâce à l'utilisation d'un co-catalyseur organique, le N-Hydroxyphthalimide (NHPI), d'utiliser l'oxygène moléculaire comme oxydant terminal. Dans un second temps, nous étudierons l'utilisation du 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) comme médiateur pour l'alkynylation de liaisons sp3 C-H. Une nouvelle CDC réaction catalysée par le triflate de cuivre (I) sera présentée dans le chapitre 3, entre un alcyne et une liaison C-H benzylique. Le chapitre 4 présentera le développement de cette réaction à l'alcynation d'éthers benzyliques en présence d'une quantité catalytique de triflate d'argent (I). Ces deux procédures sont seulement applicables pour les alcynes vrais aromatiques. Finalement, le chapitre 6 portera sur la réaction de Minisci catalysée par le palladium. Le peroxyde radical α-hydroxyalkyl généré lors de la réaction est capable de réagir avec les azines. La quantité stœchiométrique d'acide nécessaire lors de la traditionnelle réaction de Minisci, a été remplacée par une quantité catalytique de dichloro palladium.
Laren, Martijn Wouter van. "Palladium-catalyzed C-H and C-N bond formation". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/75422.
Texto completoKarabal, P. U. "Asymmetric synthesis of bioactive molecules and formation of C-N, C-Br and C-I bonds via olefin functionalization". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2014. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2219.
Texto completoThakur, V. V. "Asymmetric synthesis of bioactive molecules and formation of C-C, C-N, C-Br, S-O bonds by transition metal catalysis". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2002. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2338.
Texto completoMidya, S. P. "Transition metal catalyzed (de) hydrogenative C-C and C-N bond formation". Thesis(Ph.D.), CSIR-National Chemical laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4568.
Texto completoLibros sobre el tema "Formation of C-N bonds"
Taillefer, Marc y Dawei Ma, eds. Amination and Formation of sp2 C-N Bonds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40546-4.
Texto completoC-X bond formation. Heidelberg: Springer, 2010.
Buscar texto completoZucherman, Jerry J. The Formation of bonds to C, Si, Ge, Sn, Pb (part 2). New York, N.Y: VCH Publishers, 1989.
Buscar texto completoVigalok, Arkadi, ed. C-X Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12073-2.
Texto completoKrische, Michael J., ed. Metal Catalyzed Reductive C–C Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72879-5.
Texto completoCatalyst Design for the Ionic Hydrogenation of C=N Bonds. [New York, N.Y.?]: [publisher not identified], 2015.
Buscar texto completoM, Coates Robert y Denmark Scott E, eds. Reagents, auxiliaries and catalysts for C-C bond formation. Chichester: Wiley, 1999.
Buscar texto completoMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Dordrecht: Springer Science+Business Media B.V., 2011.
Buscar texto completoJ, Krische Michael y Breit B, eds. Metal catalyzed reductive C-C bond formation: A departure from preformed organometallic reagents. Berlin: Springer, 2007.
Buscar texto completoHorvath, Michael John. Initial studies into selective C-F bond formation via the reactions of fluoride ion with organometallic complexes. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Formation of C-N bonds"
Toffano, M. "Formation of C—N Bonds". En Organophosphorus Compounds (incl. RO-P and RN-P), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-042-00432.
Texto completoBrown, J. M. y B. N. Nguyen. "C—N Bond Formation". En Stereoselective Synthesis 1 Stereoselective Reactions of Carbon—Carbon Double Bonds, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-201-00185.
Texto completo"C–C Bond Formation". En Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 217–53. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00217.
Texto completovon Angerer, S. "By Formation of Two N–C Bonds and Two C–C Bonds". En Science of Synthesis Knowledge Updates KU 2011/1, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-116-00079.
Texto completo"C–X Bond Formation". En Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 179–216. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00179.
Texto completoJones, R. Alan. "Formation of C—C Bonds". En Quaternary Ammonium Salts, 229–301. Elsevier, 2001. http://dx.doi.org/10.1016/b978-012389171-6/50007-6.
Texto completoKaufmann, D. E. y M. Kster. "Formation of C—C Bonds". En Boron Compounds, 1. Georg Thieme Verlag KG, 2005. http://dx.doi.org/10.1055/sos-sd-006-00987.
Texto completoBoysen, M. M. K. "Formation of C—C Bonds". En Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides, Triazenes, and Tetrazenes, 1. Georg Thieme Verlag KG, 2010. http://dx.doi.org/10.1055/sos-sd-041-00451.
Texto completoToffano, M. "Formation of C—C Bonds". En Organophosphorus Compounds (incl. RO-P and RN-P), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-042-00429.
Texto completoYang, Y. y C. Wang. "2.15 Manganese-Catalyzed C—H Functionalization". En Base-Metal Catalysis 2. Stuttgart: Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/sos-sd-239-00231.
Texto completoActas de conferencias sobre el tema "Formation of C-N bonds"
PRASAD, DIPAK y NILANJAN MITRA. "EVOLUTION OF VISCOSITY UPON CROSSLINKING IN EPOXY RESIN: AN ATOMISTIC INVESTIGATION". En Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36619.
Texto completoAli, Ibrahim y Walid Fathalla. "Synthesis of N-substituted-3,4,5,6-tetrachlorophthalimide using trichloroacetimidate C-C bond formation method". En The 13th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2009. http://dx.doi.org/10.3390/ecsoc-13-00180.
Texto completoHirn, U. y R. Schennach. "Fiber-Fiber Bond Formation and Failure: Mechanisms and Analytical Techniques". En Advances in Pulp and Paper Research, Oxford 2017, editado por W. Batchelor y D. Söderberg. Fundamental Research Committee (FRC), Manchester, 2017. http://dx.doi.org/10.15376/frc.2017.2.839.
Texto completoKim, Bioh, Thorsten Matthias, Markus Wimplinger, Paul Kettner y Paul Lindner. "Comparison of Enabling Wafer Bonding Techniques for TSV Integration". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40002.
Texto completoDuan, Shanzhong y Andrew Ries. "An Efficient O(N) Algorithm for Computer Simulation of Rigid Body Molecular Dynamics". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42032.
Texto completoAlmubarak, Tariq, Majed Almubarak, Abdullah Almoajil y Fares Alotaibi. "Vitamin C: An Environmentally Friendly Multifunctional Additive for Hydraulic Fracturing Fluids". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211113-ms.
Texto completoBolotov, Vasiliy Alexandrovich, Serguei Fedorovich Tikhov, Konstantin Radikovich Valeev, Vladimir Timurovich Shamirzaev y Valentin Nikolaevich Parmon. "SELECTIVE FORMATION OF LINEAR ALPHA-OLEFINS VIA MICROWAVE CATALYTIC CRACKING OF LIQUID STRAIGHT-CHAIN ALKANES". En Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9894.
Texto completoHenschen, A. y E. Müller. "ON THE FACTOR XIIIa-INDUCED CROSSLINKING OF HUMAN FIBRIN α-CHAINS". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644649.
Texto completoGuan, Y. F., R. Zhu, J. C. Han, H. X. Liu, S. T. Li y C. K. Wu. "Multiphoton ionization process of CH3OH and C2H5OH induced by a XeCl excimer laser". En International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thl45.
Texto completoSahu, Sunil, Anil Tyagi, Yonghwee Kim y Arjun Puri. "Accurate Identification of Gas-Bearing Formation in a Mature Field Using Pulsed Neutron Logs Prevented Well Abandonment". En Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214153-ms.
Texto completoInformes sobre el tema "Formation of C-N bonds"
I. A. Parshikov, Igor A. OXIDATION OF GERANYL-N-PHENYLCARBAMATE BY FUNGUS BEAUVERIA BASSIANA WITH AIM TO OBTANING OF NEW ANTI-CANCER DRUGS. Intellectual Archive, octubre de 2020. http://dx.doi.org/10.32370/iaj.2427.
Texto completoMariam, Y. H. The synthesis, characterization and formation chemistry of Si-C-N-O-M ceramic and composite powders. Final technical report. Office of Scientific and Technical Information (OSTI), agosto de 1998. http://dx.doi.org/10.2172/638243.
Texto completoGlauz, W. D. y Cecil Chappelow. L51467A On-Site Assessment of Mill-Applied Fusion-Bonded Coating Quality. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), febrero de 1985. http://dx.doi.org/10.55274/r0010089.
Texto completoRempel, K. U., A. E. Williams-Jones y K. Fuller. An experimental investigation of the solubility and speciation of uranium in hydrothermal ore fluids. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328995.
Texto completoArdakani, O. H. Organic petrography and thermal maturity of the Paskapoo Formation in the Fox Creek area, west-central Alberta. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330296.
Texto completoDickman, Martin B. y Oded Yarden. Role of Phosphorylation in Fungal Spore Germination. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568761.bard.
Texto completoNaim, Michael, Andrew Spielman, Shlomo Nir y Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, febrero de 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Texto completo